
AD—A 045 Web OHIO STATE UNIV COLUMBUS COMPUTER AND INFORMATION Sc—ETC F/S 9/2
A NATURAL LANGUAGE GRAPHICS SYSTEM.(u)
JUN 77 0 C BROWN, S c KWASNY AFOSR—72—2351

UNCLASSIFILO OSU—CISRC—TR—77—8 AFOSR—TR—77—1229 NI.

. __

__

i

~~~~k t6nas~~I
~II _ 

_  _A91fl1 U Ufl
— END

______12-77



~ 28 ~ 25

::~ ~~~

~

,,
• ~ 

:~ f~II~2.o

mu I .25 L•4 IIW
I.o

N
-. N’ f ’ i  ‘hi



TECHNICAL REPORT SERI ES

~~~~~~~~

D D C

E~UMPUTEE 1
dI~1fUPJ1iRT~UI~1SE1~E~1~!E1~ESER E1 1TEEI

THE OHIO STATE UNIVERSITY COLUMBUS, OHIO

- -

OSU-CISRC—TR—77~~

A NATURAL LANGUAGE GRAPHICS SYSTEM

BY

David C. Brown

Stan C. Kwasny

Computer and Information Science Research Center

The Ohio State University

Columbus , Ohio 43210

June , 1977

~~~~~~~~~~~~~~ 

~J ~~~)



I
PREFACE

The Computer and Information Science Research Center of The Ohio State

University is an interdisciplinary research organization consisting of staff ,

graduate students , and faculty of many University departments and laboratories.

This report describes research undertaken in cooperation with the Department

of Computer and Information Science.

During the summer of 1976 when this research was performed , the two

authors were supported by the T.E. French Fellowship and the Department of

Computer and Information Science. These two sources also provided computing

funds and technical support.

Par tial suppor t by Grant AFOSR 72—2351 , B. Chandrasekaran , Princ ipal
Investigator , is gra tefully acknowledged .

• 
—

~2Ct~Ofl

13
0

~~~ ~~~~ ~~

H ii

ACKNOWLEDGEMENTS

• The authors would like to acknowledge the help and support of the

following :

a. Dr. B. Chandrasekaran and Dr. N. K. Sondheimer for their constant

encouragement, valuable ideas, and constructive criticism during this

work;

b. Dr. H. W. Buttelmann and Dr. A. P. Lucido for their contributions during

the initial discussions of the project;

c. Dr. S. C. Shapiro for allowing us to use a version of the MENTAL pack-

age;

d. Nick Eastridge for helping us with a number of details for the LISP—

FORTRAN interface for the DEC System 10, and for providing us with some

software; and

e. Dave Rypk.a for assistance with the programming of the LISP—FORTRAN

interface, and as a source of Plasma Panel folk—lore.

iii •

—~~ —--—-•-——-••— -——— - — - . • — ••—•—— - — • -•-•- —--—& - .

•

0. CONTENTS. PAGE

1. INTRODUCTION •

1.1 Overview

1.2 Examp le of Dialogue

1.3 Motivation

1.4 Repor t Outline

2. OVERALL SYSTEM DESIGN 3

2.1 General Descr iption

2.2 System Construction and Start—up

2.3 The Executive Module

2.4 The Error Module

2.5 The Initialization Module

2.6 Typical Control Flow

3. THE LANGUAGE ANAL YSIS MODULE 8

3.1 Function and Overall Design

3.2 The Two Input Modules

3.3 Parsing

3.3.1 The Augmented Transition Network
Model

3.3.2 Lexical Entries

3.3.3 The Grammar

3. 4 Representation of the Parse — the MC Interface

3.4.1 Valid Case Forms

3.4.2 Creating the Prototype

3.5 The QA Interface

3.6 Problems in LA

4. THE LANGUAGE GENERATION MODULE 16

4.1 Func tion and Overall Design

5. THE KNOWLEDGE BASE MODULE 18

5.1 Function and Overall Design

5.2 The Seman tic Memory

5.2.1 Structure

5.2.2 Ac tIons

5.2.3 Naming and Erasing

iv

~~~~~~ ~~~~~~~~~~~~~ •—--—— •~~~- ••—~~~~— • - • • •- --—~~~~~~~~~~~ — . --•~~~~~~~~~~~~•— --•- ~~~~~~ -~~~~~~-~~• •



1

5.3 Question Answering

5.3.1 IntroductIon

5.3.2 The INFO Func tion

5.3.3 The FINDOBJ Func tion

5.3.4 The CONVERT Function

5.3.5 The FINDDRAW Function

5.4 Memory and Graphics

5.4.1 Introduction

5.4.2 Drawing

5.4.3 Erasing

5.4.4 Naming

5.5 Problems and Extensions

5.5.1 Moving

5.5.2 Remembering

5.5.3 Defaults

5.5.4 Structural Information

5.5.5 Defined Poin ts

5.5.6 Point Notation

5.5.7 Screen Model and Action History

5.5.8 Functions

6. THE GRAPHICS MODULE 31

6.1 Introduction

6.2 The Screen Functions

6.3 Problems and Extensions

7. CONCLUSION 34

7.1 Sys tem Performance

7.1.1 General

7.1.2 Good Things

7.1.3 Bad Things

7.2 Outstanding Problem s

7 .3  The Fu ture

7.4 Summary

8. REFERENCES 41

9. APPENDiCES 43

V ;.



—

I

I1,~

I. INTRODUCTION

1.1 Overv iew

~~~~~ T~~~This report describes an experimental system for drawing simple

pic tures on a computer graphics terminal using natural language input . The

system is capable of drawing lines , points , and circles on command from the

user , as well as answer ing questions abou t system capab ilities and objec ts

on the screen. Erasures are also permitted . Language input can be em-

bell ished with touches to convey positional Information .

The system was designed and implemented by the authors during Summer 1976 ,

was wr itten in LISP 1.6, runs in about 40K words on a DECSystem—1O

computer , and d isp lays picture s on an ag6O Plasma Panel.

The system was implemented to test out ideas on system organization ,

to establish the v iab ili ty of comb ining language and grap hics , and to

experiment with appropriate A.I. techniques.

1.2 Example of d ialogue

*? PLEASE DRAW A VERTICAL 2 INCH LINE HERE CT> .
OK
*? PUT A POINT CALLED FRED HERE <T> .
OK
*? MAKE A CIRCLE WITH A TEN CM DIAMETER AT FRED .
OK
*? CONNECT FRED AND (100 ,150)
OK
*? CALL THE CIRCLE BALL
OK
*? ERASE THE LINE FROM FRED
OK
*? ERASE FRED
OK
*? CALL THE 2 INCH LINE BAT.
OK
*? DRAW A CIRCLE
OK
*? NAME THE CIRCLE FACE
OK
*? WHAT DID YOU DRAW HERE <T> ?
a LINE called BAT
*? WHAT CAN YOU DRAW?
LINES , POINTS , and CIRCLES
*? IS THERE A CIRCLE CALLED FACE?
yes
*? CAN YOU DRAW SQUARES?
no

The system prompt is “*?“ , and the sys t em response is on the fo l lowi ng

line. The symbols “~ T~” indica te a touch on the screen . This extract

shows some of the variety of sentential forms available in the system. Not

shown , are the results of the commands Ofl the screen .

1.3 Motivation

The research being do ne by our grou p pro mises to be one more step

towards the goal of natural interaction between man and computer. Our

work is based on the belief that use of more than one mode of communica—

tion is required to achieve that goal. We have chosen to investigate the

comb ina tion of na tural language and graphics. A system using this combi-

na tion allows the use of lingu istic , graphical , or mixed forms for both
input and output of information . Careful development of this idea would

pr ovide prac tical sys tems wi th a high degree of habitability.

Many ar tists and designers who are (and wish to rema in) naive abo ut
programming will be able to interact productively with a natural language

graphics system and such a system would allow a much wider group of people

to use computers. Special subsets of both language and pictures can be

developed for various uses. We are advocating a form of natural language

programming , but with an additional (graphical) mode of communication.

We feel that the feedback provided by the graphics will assist the user

in detecting, and then interactively correcting, err ors due to vagu eness

or ambiguity. In addition , the user is able to select the appropriate

method for input of information and , for example , could prov ide a rough

drawing of an object with a description of additional details. These

techniques would be viable in a variety of appl ica tions areas , such as

Anima t ion , Architecture , Eng ineering, and Education .

Na tural Language Graphics (NLG) provides a framework for research in

several areas of computer science. It supp lies a domain t~ r the study of

linguistic phenomena and language unders tanding system des ign. Memory and

inference will play a large role in an NLG system and consequently

knowled ge representation and manipulation is important. Such systems

would also lead to new ideas abo ut Comp uter Crpahlcs , help ing to libera te
it f r om its presen t al gorithmic approach. Man—machine interaction studies

and Al systems organization will also need to be pursued .

There has been no sys tema tic study of the combina tion of language
and graph ics , although ther e have been a few sys tems w ith this comb ina tion
[Klrsch , Coles , Simmons , Badler and Winograd] and some recent work on
graphical information [Sondheirner , Palmer , Agin , Nevatia and Minsky].

-3

1.4 Report Outline

The next section , 2, is concerned wit h the overall desi gn and opera tio n

of the system. Sections 3 and 5 describe the language processing and know-

ledge componen ts respect ively. As these are the longest and most important

components they are both described in some detail. The language

generation component is presented in Section 4, wh ile graphical output is

described in Section 6. The final section is a summary and con~ 1usion .

2. OVERALL SYSTEM DESIGN

2.1 General Description

NLC is composed of nine independent modules. Communication among

modules is achieved by a message—passing scheme in which any module may

invoke ano ther by sending an appropriate message . As illustrated in Figure

SYS—1 , all messages are handed to the Executive module (EXEC) which

ultimately relays the message to its destination . Thus the system is

or ganized he terarch icall y , al though a speci f ic call ing seq uence has been

induced on the model which limits the interaction of modules in actual

operation.

LIN
H

EX EC LFTN J

[
~

LA

J
~~ ~~~K B] ~~~~~GR

FIGURE SYS— i
System Organi zation

_

- - __

Each of the remaining eight modules has specific duties in the operation

of the system. The Initialization module (INIT) contains startup infor—

mat icn for NLG . If the system detects internal inconsistencies , the System

Error module (ERR) is called to interact with the programmer in debugg ing.

Modules for graphical (touch) input (CI) and typed text input (IN)

provide preprocessed user input for language analysis. The Language

Analysis module (LA) parses the input, using an ATN grammar , into a case— H
based semant ic structure. The Knowledge Base module (KB) develops a

semantic network from the input and creates instructions on how to update

the display screen. The Graphics Output module (CR) uses these instruc—

tions to run a graphics program. Responses to the user are produced by

the Language Generation module (GEN) using a generative ATN grammar.

NLG is written in LISP 1.6, except for the graphics primitive

routines which are coded in MACRO—lO. As a debugg ing feature , the evaluat ion

of a LISP expression is permitted whenever the system prompts the user for

input by preced ing the expression with a dollar sign character ($).

Each module or collection of data used in building the system is

contained on a separate file. (A comp lete breakdown of the size of each

module appears in Appendix A.) In addition , an assembl y of utility

functions and functions useful in more than one module is kept on a

single file. The original motivation for doing this was to facilitate the

dynam ic swapp ing of modules to maximize the use of memory. Although the

mechanisms for this were implemented , processing t ime increased prohibitiv ely .

However , the comp lete separation of modules in this fashion eliminated

many of the problems typ ically encountered in developing large systems .

2.2 System Construction and Startup

The system exists in LISP and MACRO—lO form. For ease of construction ,

a special control file is submitted to the monitor to build the system and

create a core—image “SAVE ” file. The content of the control file

follows :

.COM? LARITH ,ILSPF4 ,PLASUB

.R LISP 38;/A
1200 12400
*(SETQ ~~~~~~~~~~ T)
*(pUT5y~1 FLONUM FIXN UN)
*(LOAD NIL)
*LARITH , ILSPF4 ,PLAS UB $
*(DSKIN (NL C . L P 2 . LSP))
* (DE CIMAL)
*(GC) . -

. SAV PLAS MA .SAV

.DEL PLASMA .HGH

.K/F

~~~-- - -  --- —-• --- • _ _



-

~~~~~~~~~~~~~~~~~~~~~~~~~~~

--

~~~~~~

--

~~~~~

5

where $ represents an aitmode character.

First , the three MACRO— b files are comp iled : the file LARITH

establishes the interface between LISP and the FORTRAN library arithmetic

routines (i.e., SIN , COS , etc.); the file ILSPF4 builds the interface

from LISP to the graphics primitives package ; and the file PLASUB contains

the plasma panel subroutines. LISP then runs in 38K with the full word

space set at 1200 words (octal) and the free storage space s.~t at 12400

word s (octal). These values were established mostly through experimen-

tation , but see the LISP reference manual [Quam and Diffie] for further

details. Once in LISP , the KB trace mechan ism , used for debugging,
must be switched off by setting the flag *TRACEOFF* . The two internal

LISP routines FLONUM and FIXNUM , which deal with converting f ixed and
floating numbers , must be put on the DDT symbol table to be available for

the interfaces. Next , the relocatable files compiled earlier are loaded

into expanded core. LISP makes use of the system loader which itself

is loaded on call and unloaded when finished. At this point , the total

core allocation for NLG may reach 43K. The system is loaded next. The

file NLGLP2.LSP contains the individual file names along with their

location on disk. Lastly, the sys tem is placed in dec imal mode and garbage

collected. The complete system is now saved in the core—image file

“PLA SMA ” and the task is completad . The sketchy descr iption given above

may be c lar i f ied sing ificantl y be r e f e r r ing to the LISP manual ’s

sections on adjusting system parameters and loading binary files.

Once im~ig~ of NL G is ava ilable , a user types

RI! PLAS~1A

to gain access to it. At the prompt , a val id message to INIT may be sent

via EXEC ; however , for convenience , one may type
(INIT)

to establish contac t with NLG .

2.3 The Executive Module

The Executive module (EXEC) receives and sends all messages in the

system. A validity test Is performed on messages according to the following

syntax

The notation used in expressing syntax in this report is a modified
BNF where the symbol “or ” shows alternatives and subscri pts foll owing
non—terminals show the minimum number of occurrences.

!IUUuIUI.uIUuuuIUUIIIP1!

~

!

~~~ 

— i ~
’-- -- - - ‘~

—----
~~~

-‘.—.
~
—-

~~~~~~~ 
,
~~

.. .
~ 

______ 
~~~— .  -~~~~~

6

- I -ssage : : (~to - f r o m . -~m a r k Irgs)
- to : := module name
from : : module name

~m .irk - : : = ~~~ or
- l rgs - : : = (- irg)

The modul e mimes used in t h e < t o ~- and < f r o m components must c o r r e s p o n d

to the names g i ven in F i g u r e S Y S — l . The l i st of ar g u m e n t s is not checked

by EXEC , s ince each m o d u l e g e n e r a l ly p r o t e c t s i t s e l f f rom bad d a t a .

Messages w i t h a q u e ry m ark (;f l Q) are sent as module ca ll s w h i l e thc , se

w i t h .i r esp ose mark (P R) are r e t u r n e d as a value to the c a ll e r . Also ,

EX EC may he g i v en t h e message by c a l l i n g or r e t u r n i n g . This a l l o w s the

conveyance of messages in f o u r ways , c o r r e s p o n d i n g to the m a n i p u l a t i o n of

the c a l l i n g leve l i n L ISP and t he c a l l i n g leve l of NLC . The f o u r

possibilities are :

(i) c a b l i n g EXEC w i t h a i.Q message ;
(i i~ c a l l i n g EXEC w i t h a ~R message ;

(i i i) r e t u r n i n g a ~Q message to EXEC ; and
(i v) r e t u r n i n g a ~R message to EXEC.

The f i r s t c o m b i n a t i o n r e s u l t s in a c o n v e n t i o n a l module c a b i w h i l e the las t

results in a c o n v e n t i o n al r e t u r n . The second p o s s i b i l i ty is never used

in NLG . The t h i r d one a l l o w s module i nvoca t ion in a manner s imilar to

c o — r o u t i n i n g . LA a i d KB o c c a sio n a l l y communica te in th i s fash ion .

E XEC ’ s f i n a l d u ty is t o a u t o m a t i c a l ly produce a t r ace of all sys tem

messages on the f i l e M E S S . L P T , i n c l u d i n g s t a t i s t i c s on t ime and space

u t i l i z a t i o n .

2 . ~ T h e [r r r Module

The S y s t e m E r r o r mo dule (E R R) e x i s t s s o l e l y as a debugg ing f e a t u r e .

I f t h e message v a l i d i t y t e st c o n d u c t e d by EXE C f a i l s , then ERR is c a l l e d .

I t d i s p l ay s the bad message anJ i n t e r a c t s w i t h the user to c re at e a new

one. Of course , the d o l lar si gn ($) f e a t u r e wh ich a l l o w s LISP e v a l u a t i o n

is supported allowing a k n o w l e d geable person to comp l e t ely i n v e s t i g a t e

the problem. ERR m - i v be cons ide red an e x te n s i o n to EXEC , bu t has been

rarely used .

2 . 5 The I n i t i a l i z a t i o n Module

The sy s t e m is ac t i vat e d w i t h a u s e r message to t he m i t i a l i z a t inn

m o d u l e (IN I T) . Here , a l l g loba l s y s t e m pa r a m et ers ar e in it L i i i zed , ou t p u t

c h a n n e l s ar e e s t a b l i s h e d , and an m i t í a ! sc reen e r a s e is p e r f o r m e d . The — .
screen ’ s c u r s o r p o s i t i o n is set to z e ro and the d i st ance between l i n e s

~

-

~

- - - ~~~~~~~~~
--.- - - - - - -— —---~~~~~ —~~~- --~--—.--— ___

- rr rr,, t~~~~.wra ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~

7

(of text on the screen is set to 15 screen units. These parameters are

utilized in repositioning the cursor after drawing. An introductory

system response is then made via CEN .

Next , a message is sent to activate LA for input processing. It

must be determined from the eventual reponse to this message whether

to stop the system or to re—activate LA. For the former , an exit

response is made and NLC halts , otherwise GEN is directed to respond

“OK ” and LA is called again.

2.6 Typical Control Flow

Although NLG is based on a heterarchical model , hierarchical relation—

ships exist among modules viewed in operation . The f o l i o win g diagram
-(-

illustrates typical control flow in the system

USER)

-
~~ I N I T ~~~~

LA~~ — KB ~G E N

/ \
/

I N G E N G E N GR

GI

When INIT is activated by the user , it knows to expect input. Thus , LA

is called. From there , IN is activated to process the raw input , w ith

CI being called to handle graphical input. During LA ’s processing, KB
may he consulted for stored or acquired knowledge . Upon completion , LA

Of course , EXEC controls the passing of messages , but the diagram would
become unnecessaril y complicated if EXEC were inc l uded everywhere. The
remainder of this paper will contain no mention of EXEC unless essential
to the discussion.

~~~~~~~ 
~p . 

tL~~~~ ~~~ -. ._ ~



8

can either pass control to KB or return to INIT. The former happens for

commands and the latter for question—answering. When KB gets control ,

it concludes the processing by building memory structures and directing

CR to draw. KB then returns to INIT. GEN may be activated by either INIT,

LA , or KB.

3. THE LANGUAGE ANALYSIS MODULE
3.1 Function and Overall Design

The Language Analysis module (LA) processes all input to the system ,

including both typed text and touches to the screen. Figure LA—l shows

the logical structure of LA.

I N I T

r - - - - - -  i r
11 _ _

Con~ oI H --- - MG

- ~~~~~~~~~~~~ 

-

I ATN
IN Parse r ~ qacaI~~4~ QA

- . -~~ 
L

/ 1  

~
• 1 

~~~~~~~
‘‘

“

I

GI Grammar~ ‘Lexicon I
I

/
1

~~~ ./

-~~~~~~ LA~~~~~~~ H KB 
-

FIGURE LA—i
LA O r g a n i z a t i o n

An Augmented Transition Network (ATN) parser [Woods , 1973] serves as

the primary component of the module , and a call of LA may optionall y

spec i fy an ATM state name or configuration . While parsing, the grammar
permits queries to the Question—Answering (QA) mechanism within the

-- , - - —  .-~~~~~~~-—- -~~~~~- ~~~--.-~~~~~~- - - - - —-—-~~~~~~ —~~—m-~~ ~~~~~~~~~~~~~~~~~~



- -

1 - 1  9

Knowledge Base (KB), via the function QACALL , to retrieve other stored

knowledge as required. The parse results in a case—like structure called

a prototype which contains a representation of the ori ginal input (see

Section 3.4). If the input posed a question , the answer may then be

retr ieved from QA via the function QASK. For commands , the prototype

is passed as the argument in a message to the Memory and Graphics (MC )

mechanism within KB. If the input commanded the system to stop, then a

return message is conveyed to INIT which stops the system.

3.2 The Two Input Modules

Before parsing can begin , the input must be scanned and assembled into

list form. The Input module (IN) is designed for this purpose. If IN

should detect a touch control character while scanning, then the Graphics

Input module (CI) is activated to interpret a touch. Touches become

screen coordinate pairs (a LISP dotted pair of numbers) in the input list.

Encountering a carriage—return causes IN to return the input list to LA

for parsing.

3.3 Parsing

3.3.1 The Augmented Transition Network Model

The ATN parser used in this module is modeled after the one used

in the LUNAR system [Woods , 1973; Woods , et al. , 19721. A finite state

network of states and arcs is endowed with recursive capabilities allowing

a sub—network traversal to be performed in the course of following one

arc . This recursive transition network is further augmented by the

capacity to manipulate “reg isters” and perform function calls during

traversals. Such reg isters can con tain flags , words from the input
string, partial parse trees , case structures , or any expression permitted

by the host language . This allows the various constituents to be built ,

tested , al tered , and steered into position within the represe itation

chosen . The behavior of the parser is determined by the grammar and lexicon

provided. The syntax of gramma r specification in an ATN appears in

A ppendix B. The lexicon consists of a list of feature—value pairs for

each word sense.

3.3.2 Lexical Entries

In NLG , new features were added to lexical entries throughout

2_

~

_

~ 

_ _ _ _ _ _



10

the  p r o j e c t  as they  become justifiable after discovering additional

d i s t i n c t i o n s  to be made whi le  processing.  Four f ea tu re s  are  considered

basic to the pars ing  scheme : the syn tac t i c  category of the word sense

( C T GY ) ;  the  root form of the en t ry  (ROOT) ; the number ca tegory (SING or

PLUR) fo r  nouns (NUM) ; and the t r a n s i t i v i t y  of verbs (T RANS) .  A case

feature (CASE) was also used to suggest which case or cases the entry

might fit. For the position case , an indicator (TAG) showed the type of

position being described by taking the values ENDPOINT or LOCATOR . For

verb s like “connect” which literally means “draw line”, the object to be

drawn (i.e., a straight line) is specified under the feature OBJ . Words

such as “c i rcumference” or “diameter ” which app ly only to circles have

the f e a t u r e  %OBJECT wi th  a value of (CIRCLE) to indicate  t h i s  dependence.

Similarly ,  “degrees ” app lies as a size measurement to ang les and is

indicated by a SIZEOF feature with the proper value . Adjectival relation-

ships are utilized in disambiguation to limit the number of poss ible
word senses to consider. For example , a line can be STRAIGHT or CURVED
and the feature ADJ is used to specify this fact. Determiners can be

definite or indefinite indicated by a DEF feature with either a T or

NiL value . Lastly, abbreviations are distinguished by the feature

ABBREV . The input vocabulary appears in Appendix C while a partial lexicon

is given in Appendix D.

3.3.3 The Grammar

The gramma r for parsing can be viewed as five distinct networks :

sen tence , touch , noun phrase , prepositional phrase , and question . The

five network diagrams appear in Appendices E , F , C, H, and I.

The sentence level network controls the construction of imperative

prototypes. The initia l state (S*) contains arcs which decide whether a

command or a question form is present. Questions typ icall y beg in with

auxiliaries or question words of various types and these are detected by

the function QSTART , called as the test portion of the arc which looks for

questions . Notice that the grammar permits prepositional phr ases or

touches to the screen at the beginning of a sentence. These are

remembered using the HOLD mechanism until their proper place can he found

later in the string. The imperative form is parsed from the state S*IMP .

If the system is being commanded to stop, then the arc to  s t a t e  S*STOP

builds the proper message to be conveyed to INTl and parsing stops.

The arc to VP*HEAD is crucial in the development of the Imperative

_ _ _ _ _  _ _  - - — — — - -~~~~~.-~~~~~~ - -~~~~-- --~~~~—- ~~~~~~~~~~—--



11

proto type . It finds the verb near the front of the sentence and estab-

lishes the prototype . At state VP*HEAD , the post—verbial constituents are

expected. In most cases , a noun phrase will follow , but other possibilities

remain. For verbs like “connec t”, a virtual object (ST—LINE) is implied .

This will be followed by an indication of what two things are to be connected.

Once at the state VP*, any of a number of constituents can be handled .

In particular , a touch is treated directly in the grammar in a manner

similar to noun phrases and prepositional phrases. When the sentence has

been comple tely parsed , the resulti ng prototype structure is returned as

the final value.

The touch network allows the parsing of a touch to the screen which

has been prepr ocessed by CI , or equivalently, a specification in the input

string of a pair of screen coordinates. Either of these may be optionally

pr eceded by “here”, “there ”, “this ”, or “that ”. After a touch point has

been parsed , the LISP dotted pair of x—y coordinates is returned as the

resul t. An arc has been provided at the accepting state of the touch

network to recognize multiple touches to the same point on the screen .

This became necess ary af ter such a phenomenon was observed in oper ating
the system . Of course , onl y one pair of coordinates is returned in such

cases.

The noun phrase network describes the processing of entities used

in the system as noun phrases. In addition to the standard noun phrase

consisting of the head noun with nominal modifiers , this network also

handles :

(1) names — e.g., “the point 1°’ or simply “F”;

(2) the preposition “of” — e.g., ~‘an ang le of 32 degrees ” or

“a line of length two inches”;

(3) a touch used as a comp lementizer — e.g, “the l ine ~T~ ” ;

and

(4) calls via QACALL to establish the identity of a name

(FINDOBJ) or to change numeric scale (CONVERT).

Sufficient flexibility is provided in the network to process most reasonable

combinations of the lexical items known to the system. The reader is

referred to the NP* network in Appendix C for a more detailed exposition.

The prepositional phrase network provides an additional flexibilit y

in processing. The preposition is found first. This can be either a

standard preposition (e.g., to , from , at , through , etc.) or one that takes

. -- ,

~ 

.~~ ~~~~~~~~~~~ --- -. --- -—---- - - ~~~~~~~ 



12

a compound form (e.g., between). Next , either a noun phrase or a touch
A 

can be found . Finally, if a compound form is expected , as in “be tween

the point P and here <T> ”, then this is parsed . Note tha t by using the

HOLD mechanism and a VIR arc , the interpretation given is literally

“between the point P and between here <T> ”. When comp lete , the phrase

is returned and a partial prototype , built from the phrase , is lifted to

the call ing level.
The final component of the grammar is the question network. This

has been developed to the point where several types of ques tions useful
in NLG can be processed correctl y, bu t rema ins somewha t incomple te as

a general question—answering grammar. Nevertheless , the following questions

resul t in answers as indica ted:

(1) What can you draw?
LINES , POINTS , and CIRCLES

(2) Can you draw circles?
yes

(3) Can you draw a circle with a 3 inch circumference?
yes

(4) How many screen units is an inch?
64

(5) Is there a point named P7
yes

(6) Is there a circle named Fred here <T>?
no

(7) Is there a straight c ircle?
I don ’t know

The question network permits a variety of syntactic forms as shown in

the diagram in Appendix I, but answers canno t be generated for some of

the possible paths . This situation was allowed to develop intentionall y,

since the system is not primarily concerned with this capability. More

work in this area is antici pated.

The five ne tworks combi ne to fo rm a gramma r for NLG wh ich performs
well enough to parse most sentences In less than a half second — a major

factor in allowing real time response. Append ix .1 contains some sample

sentences with their timings.

3.4 Representation of the Parse — the MG Interface

The result of a completed parse is a structure called a protot ype .

Appendix K contains a description of one w h i c h  shows the form permitted

by each of the slots in the case—like structure. The f u n c t i o n  of each of

these is discussed hr Ee flv below.

_ _ _ _ _ _  .~~--- .- .—~~~~- -  -- - —-.. --- . -..- - -~~~-~~~~~~~~~~ .~~~~~~~~~~~~~~ .- -.-~~~~~~~~~~~~~~~~~~~~~~~~



3.4.1 Val id Case Forms

The %TYPE case indicates what form of input was detected during

parsing. Two types are distinguished by the system , namely the impera tive

(IMP) form and the question (Q) form. Only imperative forms result in

calls on MC in the curren t implementation. Question forms are handled

completely within LA.

Three actions are possible for the %ACTION case. These are drawing,

erasing, and naming. The verb of the imperative sentence is reduced to

one of these basic forms .

Only three objects are recognized by the system. Thus, the %OBJECT

case can be f illed by either ST—LINE , CIRCLE , or POINT.

The %NAME case is included to contain the name of the drawn or

erased object. This name is limited in form to a LISP atom and is

specified by the user in the input string.

The orientation of a line can be specified in the ZORIENT case.

This contains a numeric value in degrees measured counter—clockwise

from the horizontal.

Position on the screen can be indicated in the %POSIT case. Any

number of points (usually no more than two) may be specified. Each point

specification consists of a tag for either ENDPOINT , LOCATOR , or TOUCH ,

and the coordinates of the actual point. ENDPOINT is used to indicate

the end points of a line. The midpoint of a line , the center of a circle ,

and the location of a po int are all indicated by the tag LOCATOR. A

TOUCH tag is used whenever the function of the point is not determined from

the input sentence (e.g., “Erase this -:T~ ”). The coordinates can be

specified in actual screen units as a dotted pair of numbers , or they may

be given by referring to the node identifier for a particular point

stored in the KB. The latter is indicated by the tag NODE dotted to the

node identifier.

Finally, the %SIZE case indicates the length of a strai ght l ine or

the radius of a circle in screen units. In addition , by including one

o f the tags RADIUS , DIAMETER , or CIRCUIIFERENCE , t h e  size of a circle can

be given in terms of one of these.

3.4.2 Crea ting the Prototype

The prototype is established direct lv from the verb . The f u n c t  Ion

DEFINEPROTO is used to create a propert y list entry for t h u  verb

consisting of a list of the case names to appear In the finished prototype

S. . -
---

~

-.--- --———-——

~

-—-———- ,-- — —-----.-- - ——-- ~~~~~~~~~~~~ - . - ~~ - -.—---- --- . .-



.~ .- . -

14 

p
form. At present , prototypes for draw , erase , and name are determined

in this way. They consist of exactly the same form , although this need

not necessarily be the case. Other verbs , of course , appear in the

input string, but these are reduced to the canonical verb form so that

the reference to the prototype is always done correctly. The function

PROTO is used in the ATN gramma r to retrieve the proper prototype form.

As constituents are discovered and parsed by the ATN grammar ,
they are slotted into the proper case positions. The function PROTOTYPE

changes the current prototype to reflect the value to be added . Normally,
additions are made as they are discovered , but the HOLD mechanism

allows some of these decisions to be delayed until a later VIR arc can

find the proper positioning of the constituent. This is particularly

useful in handling touches which are found out of place and fo r  mov ing

prepositional phrases to the post—verbial position.

3.5 The QA Interface

The Language Analyzer utilizes knowled ge accumulated in KB to hel p

in parsing and to answer user questions. The two functions , QACALL and

QASK provide the interface to QA for grammar—produced and user—initiated

questions respective ly (see Figure LA—i)
QACALL build s a message from the arguments passed to it. The first

argument indicates the name of the operation required of QA and this is

limited to either FINDOBJ , CONVERT , FINDDRAW , or INFO . Other arguments

to QACALL are included as part of the message to QA. Only FINDOBJ and

CONVERT are used in grammar—produced questions , while user—initiated

questions may use FINDDRAW and INFO .

QASK is activated by the LA Controller after the parser returns with

an indication that it parsed a question form. This function must determine

how to answer a user ’s question based on reg ister settings created during

the parse. The collection of registers is passed as the function ’s one

argument. If the user ’s answer has not alread y been determined during

the parse , then an appropriate message is sent to retrieve additional

information from QA.

The function FINDOBJ is used in determining the reference of a name

mentioned in the input string. For phrases like “the point P” it answers

the quest ions “Is the object named P a point ?“ and “Wha t is the node

identifier in memory for the point named p ? ” The parser calls on this

function whenever a name is mentioned . This is especially u s e f u l  In

_ _ _ _ _



15

determining how a word is being used when no lexical entry can be found .

Conversions to system units are accomplished through the CONVERT

feature of QA. The only units recognized in MC are screen unit s for
lengths and degrees for angles. Any other scale must be converted to

these and the grammar contains appropriate calls to QA to accomplish this.

FINDDRAW is used to determine if a particular entity is drawable
or erasable , and to retrieve the list of objects drawable by the system .

Its use is limited to answer ing spec if ic ques tions like “Can you draw . . .“
or “What can you draw?”

The INFO feature of QA encompasses all other types of questions.

A prototype structure , similar to that built as a final form of

representation for completed sentences , is partiall y f illed in with the
information known at the time of the call and passed as a parameter. In

addition , a list of the cases tha t need to be filled by INFO is also

passed. The response arrives in the form of a prototype with the requested

cases be ing filled if possible. If more than one item can fill a case

slot , then all of these are returned . For example , in answering a question

like “What did you draw here <T>?” the question is put to INFO in the form
“Give me the %OBJECT and %NAME of the items drawn at <T> .”. The response

is later passed along to GEM so that the eventual answer comes out as,

for example;

“a CIRCLE named BALL”
“a POINT named FRED”

3.6 Problems in LA

A number of minor problems continue to be a point of concern in the

lang uage anal yzer. Of course , it is difficult to assess the ultimate limita-

tions of the approach taken here , but hopefull y no maj or obs tacles will

he encountered in the immediate future to impede the extendability of the

system. A few problems are discussed below .

The adjectives “sm~’ll” and “large ” should be handled heuristically.

In doing this , the object must be considered and appropriate size cal-

culations must be made relative to its shape. The current approach is

adeq ua te as a guess for average size ci rc les on the scre en, hut a “one
inch d i ame ter ” small c ircle and a “four inch diameter ” lar ge c ircle may
not always be appropriate. This problem is not unique to these two words.

Cons ider , for example , how to handle “near ” or other locatives such as

“above ” , “below ” , “beh ind” , or “next to ” .

— -~~ —- - ---_ - ---- —----- - — --. ---~~~~~~ -—  —---- — —-— ---- - - - ,--



16

Prepositiona l phrases containing “to” and “from” ar e hand l ed

identicall y. They each result in creating an ENDPOINT tag in t h e %POSIT

case of the prototype. Thus , the directionality of the statement is

lost. Such a distinction was deliberately not made since a problem

can arise in the graphics routines if a line is drawn in one direction

and an erasure is attempted in the other. Some simple solutions to the

“end po int ” problem exist and should be forthcoming.

In pa rsing,  the grammar should perform more consistency tests

with objects and their parameters. Currently, the grammar allows input

sentences to specify circles drawn at angles , lines drawn with circum-

ferences , and points to be drawn “from here to there”.

The prototype itself may not be easily extended to handle , for

exa mp le , a “move” operation . One manner of specification in a move

cou ld ind ica te an ori gin and a destination position. This might require

introducing sub—cases into the %POSIT case. Other new operations may

require similar extensions.

The verb largely determines what structure gets built during parsing.
There may be no easy way out of this , but to extend the system to handle

some simple ellipt ical forms like “A circle here <T> please” one may want
a more flexible scheme for determining the prototype.

4. THE LANGUAGE GENERATION MODULE

4 .1 Funct ion and Overall Design
The generation of language responses to the user in the system is

perf ormed by the Language Generation module (CEN). A small

collection of temp lates serves as the basis for generation (see Appendix

L). A module can request that a response he generated by spec i f ying

a template number (TO, Ti , T2 , ...) and an ordered list of substitutions to

be made for the asterisks which appear in the template.

Besides this straightforward method , there is another way that responses

can get generated in the system. Instead of indicating the template

number and substitution list as the two arguments in messages sent to GEN ,

a message may contain the indicator CENANS1 or CENANS followed by a

pr ototype . This ind icates that either one or many answers are required

from the prototype given. A generative ATN grammar processes these

requests by parsing the prototype and producing a list of temp late

numbers and substitution lists , one for each response.  The gramma r 

— - -- -.-~~~~~~~~
- -  ,- - 

~~~~~~~~~~~
~-

17

at this stage of development is rather simple (see Appendix M) but shows

promise for future work.

The techn iques used in the CEN module work adequa tely for NLG as it

now exists. It is hoped that as improvements evolve in other modules of

the system , CEN w ill prove to be expandable as well.

~~~~
---

~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ---— ~~~~~~- -— -~~~~~~~~ -~~~--- L



1.
18

5. 
~~~ KNOWLEDGE BASE NODULE

5.1 Function and Overall Design

This module accepts a message passed to it from som e other module

and performs one of its two major tasks depending on a marker in the first

part of the argument slot of the message . Control is passed to the

Memory and Graphics section (an MG marker) or to the Question Answering

section (a QA marker). The components of the KB module are shown in

Figure KB—i. The MENTAL functions [Shapiro 1974] occupy 1.5K words , the

in itial knowled ge occup ies 3.5K words , and the rest of the KB LISP code

is 7K words. The module has the following functions :

i. to answer questions about the stored knowledge posed by

other modules in the system ,

ii. to build , erase , and change semantic memory structures ,

iii. to produce a message to be sent to the Graphics module

which will control the drawing of an object on the screen .

5 . 2 The Semantic Memory

5 .2 . 1 S t r u c t u r e

The s ty le of network structures used is heavily in f l uenced by those

d iscussed in Brachman [1976]. They are manipulated and b u i l t us ing a

slightly modified version of MENTAL [Shapiro 1974]. The network is used

to encode both the system ’s prior knowled ge about objects and details of

the objects introduced during the discourse. Attached to the descri ptions

of objects in the network are actions (ACTs) which are encoded in LISP

and used for checking stru c tures, producing part of the output message ,
and prov iding information if it is not specified by the user. Appendix
N gives a list of the actions and their functions , the Table below

give’- a list of the labels used on the Semantic Network links , wh i le

Appendix 0 describes the initial state of the network.

~~~~~~~~~~~~--~~~-—---_-



- - C “- ----‘r-’- r,_ r -~~~ .r?In -~ v~~ .rw,.. ..r’ - -‘:;—:=-r’---——-- ~~~~~~~~~~~~~~~~~~~~~~~~~ —

19

Lf~ KB

f~ C T~ ty 

~ 
‘
: ‘~ 

.- 

~~~~~~~~~~~~~~~ 

-
~~ —-/

L_ ,~ ~~ _
\ KS

P~~C(,I~ ’~M

XE)’ :

1~
- ~~ttI~. ~J . f

LIs $~ ~~ C S S C

~~~ L I S P  ~tt c~cki~ to r’~~t

— - —~~~~.

_ .z._____ ?~~-tAcLI ,~e.tt 

.. Co,~tro I / . l cw

Figure KB - i

-. -

~

—*— --

~

- . — - .- - ,

~

-

~ 

. - --, -



— a.7~ y 2 .  .—. -t~ r-.r- -~ ,~~~~~~~~~~~
- - -~~~~~~~ ~~~~~~~~~~ 

—--—-,—-. .. - —

20

TABLE OF LABELS FOR SEMAN TI C ~ [ I W O R K  LINKS

LABEL SL\N hS FOR C0~ 1ENT

SUBSETOF subset of connects two sets

ELMNTOF Element of connects item to a set

NAN 1~ Has name for item , or set , ut
concept

TYPE Has type for every node (SET,
CONCEPT , ITEM , DESCRIP-
TION , ASSERTION , SYSTEM)

EL-INTDESCR Element description connects set to descrip-
tion of a typical element

DATTR Description of attribute from concept node to
description

ROLE P lays  role  f rom d e s c r i p t i o n  node

RESTR Is r e s t r i c t e d  to connec t s  descr i p t ion
t o set

ACTION to ac t ion  f rom d e s c r i p t i o n  node
to action name

ATTR Has attribute connects item to
asse r t  ion

INSTNCOF Is an instance of connects item to concept

VAL Has value connects assertion to
i t em  or va lue

NUMBER Number of occur rences  connects  d e s c r i p t i o n
to a number

STRUCTURAL to a structural check connects concept to
an a c t i o n

INSTANTIATES I n s tan t i a t e s  c o n n e c t s  a s s e r t i o n
t0 description

OBJECT ~ .

FRASED to erased ob j e c t  I U  simple screen model

The backbone of the network is a h i e r a r c h y  of se t s , i n c l u d i n g  ~ t r a i gh i t

lines , points , ang les , distances , defined paints (i.e., locati ens on the

screen; not r.ecessarily illuminated), and circles (Figure KB—2).

Consider t he  portion of the network which stores prior information

about circles (Figure KB—3).

Node 1 represents the set of all Circles. Node 2 r e p r e s e nt s  the

descr ipt Ion of a typ ical element of that set . Nn~Ie 3 r e p r e s e n t s  one of t h e

parts of the desc r ipt ion . The part shown here is that of  “h.oc~~t or ” , 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

__

-
. . .. : : : .r~~~r..rc rnr.r ~ ;rr: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ,‘~ .——. ,, ---—--..- - — ,~~ — --.—~~ — —

I

~~~~~~~~~~~~~~~~~~ ME~~~~~~~~~~~~~~~~~~~~ S E

Figure KB-2

~~~~~~ b~~~~~~iP - r , ,~‘-
S. :>~ET ‘r ’~(i~t~

a~~- 9

I ~~~~~ — - -
~

—

\~
‘-
~ ~~ F p’c , ~4 t S

Figure KB - 3

~~~~~ r~~M Sc.~Er ” E ’~ o r ) r L  
I

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Figure KB-5 

-

~~~~~~~

-— -.-- ..



_____________ — 
.‘— — — —  

, —.——-— -= ‘ ‘ — ~--—~~~ rn - 
_ __. — - ,- . -5—- —— — — -.

5”

- . - ,  

22

whi. h is O-, -.o ia t , d w i t h  t h e  , - PO SIT  case in the Input prototype , and

r e s t r i c t  ~ th i n ~~s w h i c h  p l ay  t h e role of locator to members of the set of

del  j~~ed j )O juts (Nod e - 4 )  . The ACTs will he explained later.

Fi gure KB—4 shows , is a result of a request to draw on the screen~
how i n f o r m a t i o n  about  an object is stored in the network attached to the

description of that type of object. Subparts of the object are also

connected in this fashion. Notic e the ‘assertions ” in the network , wh ich

include “the assertion (node 2) that the locator of the item (node 1) is

a particular defined point (node 3)”.

5.2.2 Actions

There are three types of actions attached to the network: the

Structural action , the Default action , and the Todraw action.

The Structura~ act is used to check pieces of network after they have

been b u i l t  to the specification given in the input prototype. For example

the  net b u i l t  for  the new c i r c l e  in F i g u r e  KB—4 is m i s s i nc  s i ze  infor -

mation (i.e., Diameter , Radius , or Circumference). ACT—l9 (Sec Figure

KB—3) will detect this omission and will report that ti:. role of Radius

has not been instantiated. In general the structural art ‘knows ’ wha t

the minimum requirements are for drawing the o bj e c t , and w i l l  return a

l i s t  of those miss ing .  In the  case of a c i r c l e , t he  requirements a r e

Locator and Radius.

The Default acts are activated if a non—null list is returned by a

Structural act. In this case the a c t  uscd is the one associated with

the node which has a Role link to Radius (i.e., ACT—22 ; see Figure KB—3).

The Default act will look to see whether there is a ny t h i n g  in t h e  ne twork

which will allow the missing value to be calculated (e.g., Radius calculated

from Diameter), and if not , w i l l  provide a reasonable default value . When

it has a value , it builds an additiona l p iece of network and completes

the requirements of the Structur al act. A Default action is run for every

omission. In the implemented system only circles have default actions

The Locator defaults to a touch point slightl y to the right of the center

of th e screen , and the Rad ius defaults to 100 screen units (approximately 1.5

i n c h e s ) .

For simplicity, many imi ortant links are not shown in Fi gure KB—4 . Note
that this is t h e  f o r m  of the  n e t w o r k  pri or to defaul ts.



2 3
Draw a circle called Ball at (100,200)

i?~.I.LE S

1>#Iri-~

~“0 

.. . . . ..I~ 
LOcAT~~

I4T1~~ , 
2

EM .~~

F
:
~~~~~~~~~~~~~~~~~~~~~~~m

L •

-4

~
~~

>~-‘- ,
IM~~1 I ’

• ~~
- •

• :

2CC .~
z
‘1

Figure KB-4

- —--—- - --

~

- -—-

~

- ..- - - -- . — -- --~~--

24

Once the item is full y specified the Todraw actio,~ can be used .

IL takes the piece of network representing the item to be drawn and

produces from i t a p rogram f o r m which w i l l do the j o b . For examp le , t he

circl e , with its center at the point (100, 200) , and its defaulted
radius of 100 units , will produce (F4CRCL 100 200 100). For a straight

line the Todraw act is a little more complicated as it has a choice

which depends on which combination of endpoint , midpoint , ang le , and length

has been specified . (See Appendix P).

5.2.3 Naming and Erasing

The user has the ability to ask for an object to be drawn , and name
it , both in the same sentence (e.g., dr aw a circle called Ball at (100,200)).

This results in a Name link from the item as in Figure KB—4 . If a name

is not specified then the system provides one by taking the di gits from

the MENTAL node identifier (e.g., N2345) and appending them to the first two

letters of the concept name (e.g., C12345). Every node generated by

MENTAL is automaticall y given a unique identifier.
When the user requests that an object be erased from the screen the

system leaves it in the network , but marks it as erased. This arts as a

simple screen model , and prevents the system from attempting to erase an

object that is alread y erased. (See Figure KB-5).

5.3 Question Answering

5.3.1 Introduction

This section of the Knowledge Base is activated when another module

needs some information. The syntax of the various QA calls is given in

Appendix Q. There are four available functions:

i. INFO — A genera l ne twork sea rch ing f u n c t i o n , and the

most powerfu l function of the four.

ii. FINDOBJ — Used for discovering whether a word which is

suspected of being the name of an object actually

names some object on the screen.

iii. CONVERT — This is a function for converting lengths to

screen units or angles into degrees.

iv. FINDDR AW — Used for finding out whether an object can be

drawn .

5 . 3 . 2 The INFO Func t ion

A p r o t o t y p e form and •i i 1st of keywords a r e passed as t h e two

~~~~~~~~~~~~ --.~~~~~~~~~~
,- -~~~~~~~ - —rn——- —~~~~~~~~~~~ -- - - -  



‘. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

25

paramete rs  of INFO . The p ro to type  form is used to search fo r  i tems

in the  ne twork .  A l i s t  of i tems m a t c h i n g  the  description (i.e., t he

p r o t o t y p e  is viewed as a desc r i p t i o n )  is o b t a i n e d  and those i t ems  a re

f u r t h e r  searched fo r  t he  i n f o r m a t ion r eques t ed  by the  l i s t  of keywords.

For example:

( INFO (%OBJECT %NANE NODE %POSIT)
( (%POSIT . (  (LOCATOR ( 100.200))  ) )

) )

could give :

( (%OBJECT . (CIRCLE POINT) )
(70NANE . (BALL FRED) )
(NODE . (N234 5 N3442)  )
(%POSIT • ( ( 100.200) )

i . e .,  a l i s t  of dot ted pairs  of the form (keyword . l i s t ) .  The answer

to the ques t ion “Which ob jec t s  are at ( lOO , 200)” th er e f o re , is a c i rc le
named Ball and a point  called FRED.

The INFO func t ion  is capable of handl ing  pos i t ions  spec i f i ed  by

LOCATOR , ENDPOINT , and TOUCH. The latter will successfully match both

LOCATOR and ENDPOINT during the search , but preference will be given to

LOCATOR. Consequently, if the new inputs “What did you draw here <touch ’?” ,

and the touch point corresponds to the endpoint of a line and the center

of a circle then the response will name just the circle. However , if the

touch corresponds to two LOCATORS (or two ENDPOINTS) then both will be

returned.

The function uses the ITEMFIND procedure which searches for all

objects which match a given prototype. This is done by considering each

o~ the cases in the prototype separately (e.g., %NAME , %SIZE), obtaining
lis ts of matched items , and then forming the intersection of those list s .

The resulting list gives the ITEM nodes of all objects which possess all

of the required characteristics.

There are two error  c o n d i t i o n s  for  the  INFO f u n c t . i o n s .  I f  there is

no objec t  tha t corresponds  to t h e  desc r i p t i o n  then  t h e  message “object

as spec i f i ed  cannot be f o u n d ”  is o u t p u t  to  the  use r .  In t h i s  case , and

in the case where the object is found but there is no Information corres-

ponding to the given keyword , the “list ’ returned with the Keyword is

NIL , e.g., ( (%POSIT  . NIL)).

-- -- --.-- - --- .- - .----------------- ‘---- - - - - ---—-- —---- - - .— —-- ——



- _ _ _ _ _ _ _

26

5.3.3 The FINDOBJ Function

There are two ways to use this function. The first is to specify

both a suspected name and an object type in the call , e.g. , (FINDOBJ BALL CIRCLE).

This tests the network to see if there is an object of the specified type

with the specified name. If there is, then the node identifier of that

item is returned , e.g., ((NODE . N2345) CIRCLE ) . If there is no

object of that type with that name then NIL is returned , e.g ., (NIL CIRCLE).

If , by accident , an invalid object name has been given in the call , then

NIL is re turned instead , e.g. , (NIL NIL). The second type of call allows

the objec t type not to be specified in the call (i.e., NIL is used). This

works in the same way as descr ibed above , except that on return it

inserts the object type of the item with the name given in the call ,

e.g. , (FINDOBJ BALL NIL) gives (( (NODE . N2345) CIRCLE ) ) .

5.3.4 The CONVERT Function

The response from this function is the value obtained after converting

the given number into screen units , or degrees , depending on the unit

specified , e.g., (CONVERT 3 INCH) gives (192). Note that the screen is

8 inches square , and 512 by 512 screen units.

5 . 3 . 5  The FINDDR AW Funct ion

There are two uses for th i s  f u n c t i o n . The first allows the question

“can you draw an X? ” to  be asked by using the call (F INDD RA W X ) .  The

response will be either T or NIL, for yes or no , respective ly. The second

use is to answer the question “what can you draw?” , e.g., (FINDDRAW NIL)

gives (ST—LINES POINTS CIRCLES). This function operates by searching the

network for concepts with a TODRAW role. It is assumed that as theY can

be drawn , then they can also be named or erased.

5.4 Memory and Graphics

5. !i . l  I n t r o d u c t i o n

On receipt of the message , the KB module examines the first item

of the argument list. If it is “MG” the Memory and Gr aphics section

takes control. The %TYPE value is examined next and control passes to the

a p p r o p r i a t e  sect ion dependIng  on its value. Note that onl y imperatives

(IMP ) are imp lement ed In MG. Next the iACTION v a l u e  is used to  switch

to the  NAME, ERASE , or DRAW sections of KB.

— ---- .- —.- - - — -

~

--.-——-- .-. -- . - - - - - - -. - - -- ~~~~—,- . ~~~~ -- _ _ _



I
27

5 . 4 . 2  Drawing

A f t e r  f i n d i n g  the set and concept nodes for the object to be

drawn , an item node is inserted into the network for this new object ,

and links are formed between it and the set and concept nodes. If a

name is given (e.g., “Draw a circle called Ball”) this is added to the item

node , otherwise a name is generated by the system as previously described.

The orientation , position , and size information is extracted in turn

from the prototype , and appropr iate ATTR, VAL and INSTANTIATES links are

set up. Note that the positional information may include a

(NODE . <node identifier>) form , due to sentences such as “connect P

with (100.200) where P is the name of a point , and the node identifier is

that of the item node for the point .

The Structura l act is used to check the structure , as prev iously

described , and if necessary , default values are inserted in the network.

Once the net for the item is properly speci f ied , the TODRAW action is used

to produce a program form for inclusion in a message which is then sent

to the GR module. This message contains a modified form of the prototype

that was sent to the KB module (Appendix P). After the drawing is

completed , the screen model is adjusted , and a message is sent to the

INIT module to indicate successful completion.

5.4.3 Erasing

If the screen is to be erased , then the screen model is altered to

mark all items as erased , and a message is sent to the CR module to erase

the screen. On return from CR , the KB module itself sends a successful

completion message . If an object is to be erased , and if that object has

not been directl y spec i f ied , then the network is searched for all items

that match the prototype . If more than one is found the items are checked

and all those which have alread y been erased by the user are deleted from

t h e list. From the items remaining, one is chosen to be erased. If the

object has been specified then the form (NODE . < node identifier ) will

be used. This removes the necessity for any further searching, and th at

ob jec t  can be erased d i r e c t l y .  The TODRA W act is used to produce  a program

Note that the positional information may include TOUCH forms . These
will match both ENDPOINT and LOCATOR during the search.

- .  L~~~~~~~~



28

form which describes the erasure . This is included in a message

which is sent to CR. The only d ifference between a draw and erase

message for the same object is that tile %ACTION is marked as DRAW or

ERASE , respectively. Consequently the program form can be produced

by exactl y the same Todraw action for both operations. The CR module

detects the difference in the prototype and acts accordingly. After the

erasing is completed , the screen model is adjusted to mark that item as

era sed , and a message is sent to the INIT module to indicate successful

completion.

5 . 4 . 4  Naming

Note that “naming ” in this sys tem r e f e r s  to the naming  of o b j e c t s

drawn on the screen , and does not mean the naming of groups of ob~ -.~cts

(e.g. , four straight lines being called a square). The first action is to

remove the (%NAM E . <name>) pair from the nrototvpe . and then use the

new prototype to search for all items that match that description.

Here , as be fo re , t h e  positional information may include TOUCH forms .

Those that already have user  g i v e n  names are d i s c a r d e d , and one item is

p icked from the resulting list. That item node is deleted from the net

and a new node is inserted having tile same links , except for the name

link which points to the new name . Finall y a message is sent to the

INIT module to indica t e s u c c e s s f u l  c o m p l e t i o n .

5 .5  Problems and E x t e n s i o n s

5 . 5 . 1  Moving

There are three types of operations of this type that we would

consider adding to the system.

i. Draw in the same p lace with no change after a prior erasure.

e.g. , “Draw Li. ” (a null move)

ii. Draw in a different p lace with no e r a s u r e  of o l d  object.

e.g. , “Copy the circle here <touch> .”

iii. Draw in a different place with erasure of the old object.

e.g., “Move Li to here <touch ; .”

It would be nice if the mechanism which handles these c o u l d  a l s o  provide

changes in t he  values of other cases on request (e.g. , “Draw LI here hut

at 45 degrees and •in inch sma 11cr”). Many of these deta i h s have been

worked out , but have not been implement ed . One reason for not implementin g

th is was our susp icion that In the worst cases the prot otvp.- mi ght need

sli ght revisions . To do the  above opera t  ions at all rt’qu I r,’s spec ial 

--- ~~~~~~~~~~~~~~~~~ ~~~~~~~~~ -—~~~~~~. .- -



- -  

29

interpretation of the prototype in order to be able to specif y the existing

objec t being r e f e r r e d  to , as well  as the  new requirements.

5 . 5 . 2  Remembering

We considered implementing an action that would allow the user to
‘remember ’ the objec ts tha t he had drawn by hav ing a l l  or par t of the

semantic net dumped to a file. A ‘recal l ’ function could be used to

read back information from specified files (i.e., those created by the

remember function) and re—establish it as the semantic net. This pair

of actions could be used to maintain a record of the state of an interaction ,

and to save complete or partially completed drawings between sessions.

Remembered pic tu res could also be disp layed , after appropriate preprocessing,

on other devices such as a plotter or a CRT. In addition , it may be

useful to have a ‘f orget ’ function which could be used to permanentl y

erase net s truc tures represe nting all , or part , of some i tem or items .

This could be used if a mistake had been made , or if some object was

no longer required. It could be argued that the erase action should

remove the item from the network. However , this would remove the possibilit y

of redrawing a named object after it had been erased .

5.5.3 Defaults

A simple ex tension of the defa ult mechanism wou ld be to mark all
pieces of the net which were built as a result of default acts. This

would allow the system to recognize the difference , and enable the system

to remind the user of exactly what he had specified for an object. In

addition , defaults could be provii4ed for all of the primitives , whereas

at present , only circles have default actions. The only additions

required would be to slot the default and structural acts into the code for

KB , and create links from the appropriate nodes of the concepts to the

act names. The activation mechanism will work for all defaults in the same

way .

Structural acts return a list of those roles which need to be in s t an -

tiated before the Tod raw act can function correctly. It may he the case

t h a t  the  D e f a u l t  a c t i o n s  should he execu ted  in a p r e f e r r e d  order  so as to

make maximum use of the information given and to minimize the n u m b e r  of

defa ults.

For a better treatment of defaults , two ex tra C cchn I qucs won Id hay .

to he used . The present Implementat ion of defa~i lts is essentiall y context—

fre e, and merely uses built - In values. There will he situations when thl~

~~~- ~:i. —-- ——~~- -  -. -. - ~~~~~~~~~~ -— ~~~~~—--.— - - - —-— -- - - --- ~~ --—


-~ -——--~ - - — -~~~~~~~~~ —--—-- ~~~~~ _ _

30

is not sufficient , and where a heuristic default mechanism would be

a p p r o p r i a t e . For examp le , a d e f a u l t action could execute a space—finding

r o u t i n e to f i n d a reasonable loca t ion fo r the object on the screen. In

other S i t u a t i o n s i t would be sensible to ask the user fo r the extra

i n f o r m a t i o n , if , fo r example , the heu r i s t i c fails to find a suitable value.

5.5.4 Structural Information

There are strong ground s for arguing that the Structural act

contains too much information , even for such simple items as point , line ,

and circle. This information , for example what full y defines a straight

l ine , is not accessible as it is encoded in the LISP code. For even only

slightly more comp lex objec ts , such as squar e, it appears that this infor-

mation should be encoded in a network form. This would allow a new use

of QA by LA. During parsing , to aid in establishing the role of prepositions ,

it would be useful to have LA ask QA what other cases to input , given the

current input . For example , having fo und an angle and endpoint , and some-

th ing else wh ich is no t easily parsed , QA would be able to suggest

try ing to look for a length description . A structura l network would play

the important role of specifying the relationships between the various

attribute descriptions.

5.5.5 Def ined Points

At present , whenever a defined point is specified , no attempt

is made to determine whether there is already a structure for that

point. A simp le extension of KB would be to include a routine to check

for existing structures. This would mean that lines which shiared the

same endpoint would share the same Def point structure.

5.5.6 Point Notation

It mi ght be p o s s i b l e to use a unified notation for points , lines ,

and areas. For example:

a particular point . 100 , 200-’
the line y = 200 - vx , 200’
any poin t , with y = 200 ~? , 2O O~
any po in t < ? , ?>

the’ screen - vx , vy-
a h o r i z o n t a l l ine segment <50 — 70 , 200-
a rectangle - — 70, 100 — 150 -
any rectangle ~xI — x2 , y l — v2~

In a more s o p h i s t i c a t e d sys t em it might he usefu l to have volumes as

primitives and other basic objects is degraded volumes.

__ _ _ _ _ ~~~~.-,— -~~~~~~~~~~~--~~~~~—~~~~~--

31

5.5.7 Screen Model and Action History

In order to handle words such as inside and outside (e.g. ,

“pl ease draw a circle inside the triang le ”) it is necessary for KB to have

good know l edge of what is on the screen. For ‘outside ’ , for examp le , it

is necessary to f i n d space fo r the ob jec t to be drawn . The s tored

knowled ge about i tems in the semant ic net in some way provides t h i s

in fo rma t ion , but s p a c e — f i n d i n g could i n v o l v e i n s p e c t i n g every i tem , and

much calculation . Consequently we would prefer to have either special

hardware to tell KB which lines or points are illuminated , or some sort.

of comprehensive model of the screen , possibly in a bit—map form. Such

a model could be used for space—finding, and discovering spatial relation—

sh ips and topolog ical properties.

To deal w ith questions of the kind “What did you do?” and “Why did

you do?” , an action history should be included in the system , log ica l l y

in the KB module. This would consist of a t ime ordered set of actions

with their associated details. Use could be made of the simple indexing

mechanism available through set membershi p links. These would point to the

set of all objects of the same type , and they in turn would be linked via

a “t ime line”. This sort of mechanism could also he used to hel p with

anaph or i c r e fe rence .

5 . 5 . 8 F u n c t i o n s

For positional indications such as “near ” , “ it ’ , or “c e n t e r ” we

w ill probably need to have words that tri gger functions in tile KB modul e .

This has not been carefully worked ou t v e t , bu t we feel tha t forms such

as (%POSIT . (NEAR (TOP #SCREEN))) or (LEFT (U P PER ~tSCREEN)) could be

used . In line with our general princip le that as much informa t ion as

possible should be extracted from a sentence before KB gets to act on

it , we feel that QA wou ld probably he the correct place to imp lement

such function handling. This would allow LA to pass areas or coordinates

to the MG section .

6. T Il E GRAPHICS MODULE

6.1 I n t r o d u c t i o n

This module accep t s messages c o n t a i n i n g screen a I t e r , i t Ion commands

and executes them. F i r s t t he message is inspected to see wha t t h e a ct ion

Is , and a marker i s set depending on whether it Is draw or e r ase . Then C l it ’

argument part of the message is exe clit ed one step it a t ime . In the

current system only one step is present in each message (see- Appendix P

—‘—-- - - -—- --- -.-- ---—-.- -.- - - — _ _ _ _ _ _ _ _

32

fo r CR message f o r m a t) . The marker sets the unde r ly ing grap h ics m a c h i n e

code r o u t i n e s into e i the r draw or erase mode. An ob jec t is erased by

draw ing over it in erase mode.

The development of a LISP/Plasma panel package (PLASUB) interface

enabled us to program the module entirely in LISP. The interface also

allowed the use of trigonometric routines from the FORTRAN Library, and

consequentl y we were able to do the angular calculations with ease. The

reason for the F4 prefix on the drawing function names is that at one time

these were to be written in FORTRAN .

6.2 The Screen Functions

The draw/erase functions consist of point drawing, circle drawing,

sc reen erase , and line drawing routines. There are four l ine drawing

rou t ines , one for each sensible combination of the two endpoints , the

midpoin t , an angle, or a length. The point drawing routine uses the

increment mode of drawing to draw a poin t c o n s i s t i n g of fou r do t s . The

l ine rou t ine uses a basic vector operation. Th e circle routine uses short

chord vectors to produce the circle , with the angle step size that defines

the chord vary ing depending on th e size of the circle required .

The PLASUB package routines used in GR are:

ERASE — scr een era se
SETMOD — se t mode o f panel
INCRE — incremental draw/erase
VECTOR — l i nea r d raw/e ra s e/move

Working with the plasma panel involved us with three different

coordinate systems .

TOUCH PANEL SYSTEM PLASMA PANE l.
input system output

5 11 5 11 ~j K

x i -
.
~~~ 

ic , ,_. ~ I I
5 1 1  511

~ ~‘‘~~‘ Us ’- . ~ f~
I,’ - ‘4 ~~~ In- I~1 R .

F I G I ’ R E  C R — I



__________ _______ — — -. —- — . — ‘--

33

6 . 3  Problems and Ex tens ions

The c i r c l e  r o u t i n e  is less than  p e r f e c t  a t  the  moment , but  the

authors arc aware that there are better circle drawing techniques that

c o u l d  be used i f  necessary .  Because of t he  l a rge  n u m b e r  of vec to r s

used in drawing a circle , and because of their frequency, the circle

drawing routine suffers occasionally from transmission errors , as the

panel is connected remotel y to the DECSystem 10. It may be that using

increment mode for circles would improve this. 

—--- - -—-~ -. , - - ~~~ --~~~---- -- .-- - ------- - - --~~-



• ‘~ r , ,, —r. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~~~~~ ,~---r ~~. .-~~~r .flT ~~~~~~~~~~!. 
- 

~~~~ ~~~ . ‘T~~~

3 4

7. CONCLUSION

7.1 System Performanc e

7 . 1. 1 General

The system responds f a i r l y q u i c k l y to user in p u t , w i t h the o n l y de lay

being due to the fact tha t the terminal is remote from the computer and not

on the fastest pos’~ible line . In consequence ther e is a substantial wait while

c i r c l es ar e be ing d rawn , aggrev ated by a sl igh tly inefficient circle drawing

routine and by being swapped —out occasionall y. The sentence processing how-

ever , runs in approximatel y real time , with an average processing time of well

under a second from input to prototype formation. A slight speed—up of the

sYstem could be obtained by compiling the KB module of th e system . This was

not compiled due to the fact that a large number of structural changes would

have had to be made before compilation could take p lace . Tile average pro—

cessing tLie for each sentence from inpu t to completion is about 2 seconds , and

depends on sentenc e type, sentence length , and screen operation. The number

of sen tences tha t can be put on the screen is about fifteen , and the number

of KB—structure—buildin g sentences (drawing commands) that can be processed

without running out of space is about ten. It should be ncted tha t as a

spinoff from this project we now have a LISP—FORTRAN interface which may be

used for other LISP projects involving graphics . A version of LOGO has al-

r ead y been programmed us ing th is i n t e r f a c e .

7 . 1 . 2 Good Things

The t echnique of modular c o n s t r u c t io n using message pass ing and a

c o n t r o l execut ive proved to be very successful . We were able to develop well

d e f i n e d i n t e r f a c e s , and pur sue development of modules i n d i v i d u a l l y us ing

m o d u l e testing routines. Modules were initiall y built as “dummies ” and

graduall y built up to work correctl y. We were able to use dummy modules C c

build a complete system including , but isolating , -i newly changed module.

The ability to monitor the messages in the executive allowed us to diagnose

interfacing problem s as well as errors within modules.

We were p leased w i t h t h e ccl at ive ease w i t h wh i cli it was possible to eonst rue t
t he system , given t h e use of the A E N and MENTAL pac k ;i~~t ’ ~, and w i t h t he knowlcdce

of a “ h a n d f u l ” of Al t e c h n i q u e s . We t a k e this te he an m d h e a t ion of the

progress of A l t e c h n o l o gy .

_ _ _ _ _

~~~~~~
- •~~~~~~—.--- - --- ~~--~~~~~~~,- . -



~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ -

35 ii
I

I) esp i t e t h e l imi ted grammar , and the r e l a t i v e ly s imp l e d e f a u l t s and

system heuristics , interacting with the system was pleasant , and its “in—

tell igence ” was very convincing . Several people who had had some Computer

Grap h ics exper ience reac ted favorab l y to demonstrations of th e -vstem , and

were inclined (as even we were sometimes) to a’~cribe the system with greater

intelligence than it was capable of disp lay ing .

The ability to touch the screen with one ’s finger proved to be a use-

ful addition to the stilted forms of language normally investigated in

current research on Natural Language Understanding Systems. The processing

of d e i c t i c expressions , including place adverbs and demonstratives , followed

directl y onc e touches were included. -

The use of the INFO function in the QA section of KB allowed the user to

specif y obj ec ts by using a partial descri ption. We f e e l t h a t t h i s is a power—

ful techni que , and contributes a grea t deal to the ease of interaction with

the system .

7.1 .3 Bad Things

An overrid ing problem with the system was tha t , desp ite our best efforts ,

it tend ed to grow on its own . Some unplanned—for problem s inevitabl y occurred ,

and were solved , but due to constraints on tine and effort were not necessaril y

solved in tile best way. As usua l, there are hits we would like to rewrite.

It is not clear whether the simp listic world of lines , points , and circles

truly prov ides a basis for assertions about more comp l icated worlds. ln

id 1iti o n , we were a little suprised that even with just lines , points , and

ci :c les , and drawing and e r a s i n g , t h e system had to deal with qut te complicat ed

situations. Th is may be partl y a reflection of our own naiveté , and p a r t l y a

strong indication thla t even the 3imp lest of A l systems should not he u n d e r —

e St im a t e (h .

It would be d i f f i c u l t f o r us to c l a i m t h a t our work r e s u l t e d in a

p rac t i ca l sy s tem . From a ha rdware p o i n t of v i e w , a m a j o r w e a k n e s s is t h i t

t he t ou c h panel does not a l l ow ve ry f Inc reso h u t io n , and c o n s e q u e n t l v , p r ec i s e

p l a c e m e n t of o b j e c t s m u s t be done u s in g c o o r d i n a t es . The sv~- ’tem also l a c k s

r i i n v of the t h i n g s t h a t one would expec t in a (‘input C r Gr ;ip hi i c s system , i , ,w

ever, t h i s is to he expec ted as i t wi s never our i n t e n t Ion to inip l , ‘w e n t - i i 1

‘1 I hose f a c iii ties in the p i l o t pro t t

_ _ _ _ _ _ j. - ‘-—-— —-

~

— —-.- ——--‘,---—

~

--

~

-- - - -•-- - .- ------ .. _ _ ~~~~~

t- s ---~~~~.a~ ~~~~~~ LrurJvr . r..rz~~7 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — ~~~~~~~ .

36

More extensive modes of grap hical input would certainl y enhance the

communication in a graphics environment. Specificall y, one often would like

to simply sketch out an object rather than verball y describe it. Develop-

ment of a representation which would model the essential characteristics of

ske tches would grea tly aid such an effort.

The physical management of the screen need s some improvement. Since the

user is permitted to draw anywhere on the screen , text and pictures often over-

lap. Providing a division in the screen between the drawing area and tile

area for text seems to be the best solution . The text area could be at the

bottom of the screen showing only the last input and response.

The limited syntax of the pilot system is too prohibitive. A response

of “p leas e rephras e” doesn ’t prov ide the user with many clues as to wha t was

wrong with his input [Weischedel 977]. Certainly, an intelligent system

would at least be able to say that it had no knowledge of squares if asked to

draw one . Likewise , if the input contained all of the essential parts to

spec i f y d rawing an o b j e c t , but the grammar d idn ’ t p e r m i t the form , the sys tem

should overr id e the grammar .

We felt that as a tool for manipulating knowl edge MENTAL was at too low

a level . In a d d i t i o n to th i s , the Brachman—li ke formalism adopted for KB

uses fairly comp lex structures. This meant that a sim p le insert or change

involved several opera t ions . If we could s t a r t aga in , we would bu i l d a h igher

level of language over MENTAL and use that for net manipulation [Bobrow 197611 .

We are aware that MENTAL has evolved , and that newer vers ions may be s i g n i f i c a n t ly

easier to work w i t h [Shap iro 1976] .

7 . 2 O u t s t a n d i n g P r o b l e m s

Languag e g e n e r a t i o n , as i t e x i s t s in the p i l o t NLC sy s tem , is qu i t e

weak. Althoug h the foundation has been laid b r developing th!s module , l ittl e

e fort has been given t o t h i s . N e v e r t h e l e s s , some very s imp i e mechanisms have

proved q u i t e e f f e c t i v e in a l lowing an adequate level of communication. Lan—

guage is generated under the guidance of an A TN generative network which

si i ~~~~.s t s a temp l a t e and a l i s t of s u b s t i t u t i o n s . Thus , o u t p u t is l i m i t e d in

fo rm to p r e s i or e d temp l a t e s . T h i s r e q u i r e s tha t a l l sy s t e m r e sp o n s e s he a n t i c i -

p a t e d to some extent when the templates ar~ designed . Also , the knowled ge base

_ _ _ _ .~~~ •- ~~~ ~~~~~~~~ ~~~~

- .
—..,~-- .--

37

remains inactive during generation , unlike in language anal ysis. GEN should

he able to use the QA interface to obtain additional information to use during

generation , and it should also have access to the luxicon used by LA.

There are a number of interesting but outstanding problem s connected with

the KB module. Thle fir st has already been alluded to slig ht lv: that of

developing a full action history and model of the screen. The ability to refer

to past actions and their ordering in tine would allow a whole new range of

questions to be asked . It would also hlel p with reference problem s, as in ,

fo r examp le , “Now connect the other ends”, or “Draw another ”. The screen

t I model , if it can in fac t be built , would allow heuristic p lac ing of objec ts

and use of heuristics such as those for “near ”, or “beside ” without undue

t

- calculation.

¶ We believe that if knowledge is to be collected together at all in a

sYstem then as much knowledge as possible should be included so tha t rich l inter-

connections may be established . It is reasonable therefore , to include lexical

information in KB along with descriptions . For examp le , the word “CIRCLE ”

and its associated markers could be stored with the concep t of circle in some

way, just as a print—name can be stored on a property—list. There is no

reason why the alphabet shouldn ’t have its set of concepts , so that the words

attached to concepts would be made up of ordered sets of items which were

instances of letter concepts. Thus letters could be drawn on the screen using

the same general procedure as for objects. Fahiman [1975] makes a similar

poin t.

A problem that would have to be faced if the system were expanded is tha t

of erasing parts of objects. There’ are at least two subproblems. Consider the

f igure produced by draw ing two overlapp ing triangles:

We will presume t h a t t r i a n g l e has been d e f i n e d ‘~~r t h e sy st e m . If t h e u ser

r e q u e s t s tha t p a r t s of l ines w h i c h a re i n s i d e an o t h e r t r i a n g le be erased , the

resu l t shou ld be:

-

/ ‘
\

-

.7\

_ _ _ _ - -~ --. . . —~~~~---—______

38

This would involve some geometric calculation , and would leave parts of de-

fined parts of objects to be represented . This may be a representationa l

p r o b l e m . A n o t h e r problem occurs if the user requests tha t the Inside tri-

ang le be erased :

/

The problem here is tha t t he sy s tem does not “know ” t ha t the over l ap of the

two triang les is i t s e l f a t r i a n g le. A s imi la r s i t u a t i o n can occur if several

objects are put together so that the spaces between them form some recognizable

shape.

The problem of object selection br t o u c h i n g has been solved r at h e r

s i m p l y in the p r e s e n t s\’ster ’ by sele ctin g t h e object i f the touch coincides

w i t h i t s d e f i n e d l o c a t i o n p o i n t , or , alt erna tively , some other defined point.

Howev er , in a reali stic system ofl’. would want t o allow touches to other places

in order to select the o b j e c t . For examp le , a c i r c l e could he selected by

touching some point on its cir cul ’ti er en c e , instead of its center . It should

also be poss ible to s e l e c t some closed f i gu r e l ’v t o u c h i n g some po in t which lies

inside the f igure. A comp lete t h i e ~~rv of object sel e ct ion is a hard and ex-

tremel y interestiny problem , and would he- a necoss - i r y addition to any practical

s y s t e m .

Of til e problems presented in se c t ion ~~, b u t not d i s c u s s e d here ,

t h e mos t challenging are t h o s e of heuristic defaults and tile n e t w o r k speci-

fication of structural conditions. Brachiman [l~~77] has more to say about the

l a t t e r p r ob l e m .

7 . 3 Th e F u t u r e

This section describes some of t h e topics In whic h the members of our

group are c a r r y i n g o u t r e s e a r c h . We a re now using the N I ; p ilot system ,-i s a

background f o r new id eas and w i l l he c o n c e n t r a t Ing on t h e t h r e e a r e a s of lan-

guage ana l y s i s , k n o w h ed ge r e p r e s e n t a t i o n , and p r o t o c o l a n a l vs i s .

~~~—- -- ,-
~~~ - - - - ~~~- -~~~~~~ - - - - - - --•- - - -~~~~~

. - ---- - - ~~~~~~~~~~~~ - -- - •- ~~~~~--

39

Language analysis in a practical system should be robust. A practical

hab i t ab l e system should possess the ab ili ty to respond in tel l igen tly to sentences

regardless of the comp leteness of the grammar . Since a comp lete grammar of

English in this prac tical sense doe s no t exis t, research in na tural language

understanding must therefore develop methods that account for all potential

input. Und er investiga tion is the developmen t of a language analyzer which

combines syntac t ic with semantic processing form ing a unif orm model which

approaches this capability. It is believed that several additional benefits

will accrue from this approach. Tills scheme should be capable of correctly

proces sing many elliptical and - - e ungrammatical sentences. In addition ,

semantic cohesion should override poor syntactical form . This would allow

freq uent users to invent shor thand forms conveniently wi th no al tera tions to

the language processor . For examp le , in an NLG system one could use (17) and

(18) instead of longer forms .

(17) DRAW CIRCLE (200 ,300)

(18) LINE <touch> <touch>

Work in knowledge engineering will attempt to improve and extend the

representation used in the pilot system in order to prov ide a knowled ge base

which uses a homogeneous represen ta t ion of many different kind s of information.

It should , fo r examp le , include the s truc ture of an ob ject , how to draw it ,

the object ’s function , and relationsh ips among drawn objects. Tile knowledge

base should serve as a lexicon , a database of facts , and a grap hical database.

In addition , a portion of the research will be concerned with conversion between

the different types of information , either by spontaneous computation or on

demand.

Protocol analysis should lead us to discover adequate vocabulary and

gramm ar and preferred modes of man—machine interaction , particul arl y ratios

of g rap h ical to language use and usage p a t t e r n s . Some i n f o r mat i o n about

semant ics can also he ga the red by r e c o r d i n g user r eac t Ions ti s\’stein responses.

In a d d i t i o n to the e f f o r t in the t o p i c s a l r e a dy discussed , we are concerned

with system organization , language generation , grap h i c s , and processing drawn

input

—~~~~~~~~ -~~~-~~~~~~-~~~~~~~ - -~~~~~~~~~ -~~~~~~~~~~~~~~~~~~-“~~--~~-- -

40

7.4 Summary

This report has described a successful exper imental program for manipu-

lating simp le p ictures on a computer graphics terminal. Natural language and

touch input can be used to give commands to draw , erase and name , and to pose

questions about the objects on the screen and the capabilities of the system .

We are confident tha t wi th a robust and powerf ul language anal yzer ,

m ...~tures of language and pictures for both input and output , stored knowledge

about the pictures being manipulated , and an inference capability to assis t

the user , we will have a produc tive research and applications tool. Natural

Lang uage Grap hics provides a fer tile area for signif icant research and larger ,
more general NLG systems should result from our work.

. -

—- -~~~~~~~~~

I

4 1

~~ . R E F E R E N C E S

Ag in , G.J. (1972) “Represen tation and Description of Curved Objects ”,
Memo A IM— l73 , Standford Al Project.

Badler , N.I.(February, 1975) “Temporal Scene Analysis: Conceptual Descriptions
of Object Movements”, TR—8O , Depar tment of Computer Sc ience , Universi ty
of Toronto.

Bobrow , D.C., & Winograd , T. (November , 1976) “An Overview of KRL, A Knowledge
Representation Language”, Report No. STAN—CS -76—58l , Computer Science
Depar tment, Stanford University.

Brachman , R.J. (1977) “The Evolution of a Structural Paradigm for Repre-
sent ing Knowledge ”, Ph.D. Disserta tion , Harvard University.

Brachman , R.J. (October , 1976) “Wha t ’s in a Concept: Structural Foundations
for Semantic Networks”, BBN Report No. 3433.

Coles , L . S . (1968) “An On—Line Question—Answering System with Natural Language
and P i c to r i a l Input ” , Proceedings of 23rd ACM National Conference.

2ahlman , S . E . (May , 1975) “Thesis Progress Report: A System for Representing
and Using Real—World Knowledge”, MIT Al Labora tory, Memo 331.

Kirsch , R.A. (August , 1964) “Computer Interpr eta t ion of English Tex t and
Picture Patterns”, IEEE Transactions on Electronic Computing .

Minsky , M . (1974) “A Framework for Repre senting Knowledge ”, Al Memo 306 ,
MIT Al Laboratory.

Neva t ia , R. (1974) “Struc ’ured Descriptions of Comp lex Curved Objects for
R ecogni tion and Vi sual Memory ”, Memo AIM—250 , Stanford Al Project.

Palmer , S.i . (1975) “V isual Percep tion and World Knowledge ”, in: Rumelhart
and Norman (eds.), Explorations in Cognition , W .H. Freeman Press.

Quam , L.H., & Diffie , W., “Stanford LISP 1.6 Manual ”, SAIL Operating Note 28.7.

Shap iro , S.C. (December , 1976) “An Introduction to SNePS ”, Technical Report Nc’.
31 (rev ised), Indiana Univers ity, Bloomington , Ind iana .

Shap iro , S.C. (May, 1974) “IC — MENTAL , A Working Paper ”, Computer Science
Department , Ind iana University, Bloomington , Ind iana .

Simmons , R.F., & Bennet—Novak , C. (1975) “Seman t ically Analyzing an Eng lish
Subset for the Clowns Microworid” , American Journa l of Computationa l
LinguIstics , microfiche 18.

Son d h e f m e r , N.K. (1976) “S p a t I a l R e f e r e n c e ’ and N a t u r a l l a n g u a g e Machine
Control ” , International Journa l of Man—Machin e Studi es , V o l . 8.

We i se -h edel , R .M. (February , 1977) “Please Re—Phra se”, Technica l Report No.
77/1 , Depar tment of Statistic ’s and Conputer Science , Univers ity of
Del iwa r e.

—~~--~- - -- ~~~- - --
~~~ - - ~~ ---—— -~------ --- -..-- -- .—---— _ _ _



42

Winograd , T. (1972) Unders tandin~ Natu ra l  L ua~~~, Acad emic Press.

Woods , W. A . ,  Kap lan , R . M . ,  & Nash— W ebber , B. (June , 1972) “The l unar
Sciences Natural Language Information System : Fina l Report ”, BBN
Report No. 2378.

Woods , W.A. (1973) “An Exper imental Pars ing System for Transition Network
Grammars ” , in: R. Rust in  ( ed . )  Natural Language Processing, Algor ithmlcs
Press.

-4 

- - - ~~~~-- --- ---—— -- -- ~~~~ —.-—-~~- 



- - - - a~~~~ r -_ 
~~~~ - -~~~~~~~~

43

4 . APPENDICES

A. Module Sizes

B. Syn tax of ATN Grammar Sp e c i f i c a t i o n

C. Inpu t Vocabulary

D. Partial Lexicon

E. Sentence—Level Grammar

J
F. Touch Grammar

C. Noun Phrase Grammar

H. Prepo sitional Phrase Grammar

I. Question Grammar

J. Samp le Sen tences and the ir Parse Times
K. Description of tile P r o t o t y p e

L. Language Generation Temp la tes

M. Generat ive ATN Grammar

N. List of Ac tions used in Semantic Network

0. KBNET — Initial State of KB Network

P. Tile CR Module Interface

Q. Syntax of Calls to the QA Section of KB Module

—
~~— — — —~~~~~~~~~~~~~ f t M .rp .v :—1 rn t1 -~~~rj - nr - i i r -~ . , ~~~


~~~~~ ~~~~~~~~~~ ~~~~~~ 
.
~~~

_ •

I1
44

Words (Decimal)

ERR 26

EXEC 158
GEN

Temp la tes 80

ATN Network 359

LISP Code 199

GI 23
CR 297

IN 233
INIT 112
KB

MENTAL Funct ions 1153

In i t ia l Network 3500

LISP Code 7000

LA

ATN Network 5668
Lexicon 1927

LISP Cod e 2017

Misc . Func t ions 517

Appe nd ix A: Module Sizes

~

--- ~~~~~~~~~~~~~~ -- ---- ---~~~-~~~~~~~~~ ~~~~~~----- ~~~~~~~~~~~~~~~~ , - . -- --. - ~~--~~~~~~~~~~

— 7LU-~’ C - ~ ‘ c ’u,-~ t- —-~-—-— ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-E

45

1.. - - atm net - ::= (--arc set - 1)
2. - -a rc set~ : : (< state-- drc > 0)
3. - state- ::= any ATN state name
4. - -arc > ::= (CAT - category test - -a ct ion 0 <term act- -) or

(JUMP <state - test> :action> 0) or
(MEM <words - - <tes t> <action> 0 <term act’) or
(POP <form> <test>) or
(PUSH — s t a t e - < t e s t> <preac t ~~ <a c t i o n - - 0 < t e r m a c t >) or
(TST <label - <t e s t > < a c t i o n > 0 < t e rm act~~) or
(VIR <constit> <test> <a c t i o n > 0 <term a c t -) or
(WRD <words > < t e s t > < a c t i o n > 0 <t e rm a c t>)

5. — a c t i o n > : := <s to rage a c t - or < r e t r i e v e act’ or < c r e a t e a c t —
6. <s to rage ac t> : := (SETR <reg > < f o r m >) or

(SETRQ <reg-- <expression>) or
(LIFTR reg-’ form-) or
(L 1F TRQ <r e g - - < exp re s s ion>) or
(HOLD -z constit> <form>) ~~
(PROTOTYPE — p r o t o case> — f o r m >) or
< f o r m

7. < retrieve act>::= (GETR <reg) or
(CETF - feature-) or
(RFEAT <feature> <form --) or

-

(CTGY — category”) or
(NULLR <reg-) or
(NEXT W ORD) or
(PROTO <reg-) or
(QACALL < q a f u n c t <qa a r g s>) or
FEATURES or
* or
< f o r m -

8. <create act> ::= (BUILDQ ‘-fragmen t - — .eg~~~) or
(LIST < f o r m -) or
(APPEND < f o r m - - f o r m) or
(QUOTE < e x p r e s s i o n -) or
(UNIONP --protc e proto) or
<f orm

9. < c a t e g o ry > : := (- -ct gy>-)) or < c t g v -

10. - c t gv - - : : = any I cx ic e I c i t c-gor y
i I . <test : : = - a c t i o n - or F
12. <term a c t > : := (TO --st ate -)
13. words - : := (- -w ords --)) or - - word -

14. <word - : := any lexic a l word
15. < p r e a c t - ’ : := (SENDR -reg - —a orm --) or

(SENDR Q r eg — - e x p r e s s i o n ’) o r
(! — f o r m ~)

16. < l a b e l - : : = - i L I S P a t o m
17. - c o n s t i t - : := a l I S P a t o m
18. < reg - : mv A’l N re~~ist e r narne
19. — f o r m - : : - ;R-t ion or any L I S P e x pr ~ - s - - i I) - he I \ A 1 ~~eo t -2
20. - e x p r e s s in n - : := a ny L I S P exprossioii
21 . - prot case- - : := a c ; I s e - na m e i n t h e 1~r o t o t v 1m
2 2 . f e a t u r e - : : my l e - x i e - , l l e i t (i re-
23. - - q i f u n c t : : = I:INDOR ,I or (O N V E R T
24 . — qa - i r g s - : := ir~ iim -nt lIs t for qA
2 . - fragment - : : = .-i L i S I ’ s k i - i o t a I e xnre~sston iis in 1~ * anti + (or s,,t’st i t it - i c
2 (~. -- proto - : := an N 1 2 pro tot v 1~c

A T N 2 timn o r Sp e i t h ps

— -
~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ - ~~— -~~~~~~~~~~~~~~~ -~~~- ———— — - -



~~~~~ —‘~~~~~~ ~~~~~~ - - 
- ~ ~~~~~~~~~~~~~~~~~~~~~~~~

46

A FOUR OR
AN FROM PLEASE
AND HALT POINT
ANGLE HAS POINTS
ARE HAVE PUT
AT HERE RADIAN
BETWEEN HORIZONTAL RADIANS
CALL HOW RADIUS
CALLED HUNDRED SCREEN
CAN INCH SEVEN
CENTIMETER INCHES SEVENTY
CENTIMETERS IS SIX
CENTIMETRE JOIN SIXTY
CENTIMETRES KIND LY SMALL
CIRCLE LARGE STOP
CIRCLES LENGTH STRAIGHT
CIRCUMFERENCE LINE TEN
CM LINES THAT
CONNECT LONG THE
CONSTRUCT MAKE THEN
COULD MANY THERE
DECREE NE THING
DEGREES MILLIMETER THINGS
DIAMETER MILLIMETERS THIRTY
DID MILLIMETRE THIS
DO MILLIMETRES THREE
DOES MM THROUGH
DRAW NAME TO
EIGHT NAMED TWENTY
EIGHTY NAMES TWO
ENDPOINT NINE UNIT
ENDPOINTS NINETY UNITS
FRASE NOW VERTICAL
FIFTY OBJECT CIIA T
FIRST OBJECTS W }IJ :RE
FIVE OF WHICH
FORTY ONE WITH

Append Lx C: i n p u t V o c ab u l a r y

~

-- - - - - -—--

~

_ - - - -

~

--- --—--- - - -~~~ - _ _

- —.‘- — ‘~~~~ ‘~
_

~~~~~~~~~~ - - ---- --- ~~~~~~~~~~~ 
-- -- -

~~~~~~~~~~
-
~~~~~~~ ~~~~~~

- --
~~

-

47

/ = -~
= ~— ~~ -~:

\0 +~~ -~~~~~~

-

~~ 
:~ 

- 

-~~~~ ~~~~~~ r ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ I 
_ _

ANGLE ~~ N~~~~~~~~-~~~~ ~~~~~~~~~~~~~~~ ~~~
~~ \RF UWI I~~ IS PL1~~~t 

- -- ____- 

I
T TPREP ~~~~~~~~~ C~i ) R I E N T ~~~LOCAT0R 

-
‘

-

~~~

-

~~~~~~~T ~ 1I (‘1~ -~I T )
BLT~JJ~~~~ R I L  ~~~~~~~F~~~~~~~OI~~~ ~~~~~

—- —-- --4— --- - —-------------1------1
I I 

~~~~~~~~~~~~~~~~~~N i — - - l I R I  (~SIZE) - LINE - - 1- 

~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- ____

I I I  DECRFE ~1 I R I ( C R 1 1  NT r — 
\ ~ I 

—  

1~~~~~ -—-— ~~
—- 

I I ( _ I t I  - ~I~ — I 8 - - - -

~~ :i ~~i~~ï : ~~:i 11 :i:~: 
- — r

~~~ E:R~~f - j } r  T~~~~~ ~~n~~~T n , :N~~~~~~ TI_ ~~~~~~~ t 
- H F I J

- - T (~~I’ cH l) r —
~~~

— - ———
- 

-- _____ 

-~~~~~— r ——— — 4—~~~
— —

~~~~ —- — — — r — — - -~~~~ -
F b I -: t _\I)\’ - — - - -

~~~~~~~~~~~~~ ~~~~~~~~~_÷
II-~e H  — - ( ~I : - i )  . - . I N I  -

e l  ( ‘I 
— — ——- I 1 —

~ ~~ ‘ ~ 
- 

~~~~- 
- — -

~~ ~~~~~ ~~~~~~~~~~~~~~~~ -- -~~ - ~~~LR~La i

r—T~
T- ~~~~~~~

‘ (-~~ J —_-,- - - i - - ----

I
I I I l b --

Pb .> I N - N — - - -
- J _ - I -

l b
—

- I ~~~ (cIRCiT5~
—

~~

‘~~~~< - I
-

-

l J) I ~~~~~~~~~~~~~~ _ ~ I
I i i _ \ l - l) (1I — - t 0 - I I) - - - - -

I Ii CI I C 5 ~ I~~ ~~~~
I I ~~ I

—

T\ l~ l I I t \ I) T (
~0 I~~~~ I I

1 1 (1
~~~~~~ 

4 - - - . - - -

N \ ~I I )  -

_ H I FJ  _ ii —_-- :_ 
( -D I D  

- - -
IlFi - 1. > I ) E F  I —  - - - -

~ ( l Zi  4 F N D I ’ o I N T ’ -
- -

I t  4:I I I )  I - -
— ----

~

-—-- -— —- - - - ------ -- - —— - — ‘ - - - - - ---—--—-- - ._ _ _ _ - - _ _ _ 1 — , ——— ___h_

I

Apjie-ndix D: Part i a 1 [cxi c - o i l

I

I

~~~~~~~~~~~~~~ --


-— ~~~~“
~~

‘ ‘ r~~~~~~~
’”

~~~ ~~~~~~~~~~~~~~ 
— --—-.----- , ---- ----—- , - ,—,- —-V r~t c  — --- -

48

P U S H  P U S H

T O U CH

J U M P  ____

- r  ~~~~~A NV
J

~~~~~~~~M~~~~~~~~~~~~~
TO P HALT S ST P

‘STOP’

W R O P U S H

M E P P

VP HEA VI R OBJECT V P C

c c
I I

0 PBUU L D

T S T $ 40
P U S H N A M E Q.) 1k

TOUCH

PUSH v Ip ~~~~ VP C NPp p

PBUILO

V P C c

Append ix I-~; S e n t e n c e — L e v e l Grammar

_ _ _

—-----~~~~~ n -taL~~.r~~~!~ ? ’
- -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘~~~~~~~~~~~~~~~ —-—- - - - — - 
~ 

-- - -
~~~ 

- .
~~ _ --_;.;_ _ —

49

T O U C H

;
V

~

t ~
TOUCHI ME M ((~~~~J T L E F T

-4U)
-4

~0-o C
-I

(T ~~~~~)

E T T

f f3

T V

- -~~~ - ---~~~~~~~-— ~~~ ~~~~~~~~~ ‘ - _____

p

50

Appendix C: Noun Phrase Gr am m ar

(~~~~~~~~~~~~~Th4 7.

N P D E T I
—1,

1~
->

N P D E T

—II

N P O R D

C,

-4 -~

z
rJP N U M

-n

-4
-n

0 C A T

2. 1

a NP ADJ

U) 3 MiI- 2
2
) C A T

CN NPR ‘

C L A S S F
0

z
E

NP NP
0

L

c
0

Q

NPbE P0 S NP N PI TBT NI A COMP

a

NP

- - ------- ----- __ -_ -a -

——
—

--— —--—---__ - — ‘ — - — - - - ----- ---- --- ——
~~~-‘ — — c- - -=- ~~~~~~~~~~~~~~~~~~~~~~~~~~ 

—

51

~~( P P. P )
C CU) ID
I I

P P C  2
U C

0
I

‘

P P P P

P P  P P1

0
V

I
CASE PREP NP

I

A p p e n d i x  H :  P r e -p oC i t  i n n i l  Phr ase - Grarn- 1,-,r

- — — - -- - — -  — --



~~~pppIIIIIIIIIIUIIUUIIUUIUIUUIUIIUIIUIWmrr .’ ‘ _ _ 
-- - ~~~~- -- . --

~ :rt .. cfl&. . —. —_————---—--— — — --——— — —— --—-=-—.---- —

~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~ 
[ S Q4 ]  CSQID (~~~Q2 çJ

~~~~~MAN~ (iii COf)

*@2 V01J)

cIi~3r
\ ~

5 ,coP3 @THER~~)

dl ~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~
r’QPO P

I
(QASI (  R EO S )

DC L )PUSH NP
~~~~~~~~CL ~~~~~~~ 

V

~~~~~ 
DCL ~~~~ ~ çDCLPDI)~~

p p o To

A pp end ix I : Quot; t i n C r~m mma r



Appendix J: Samp le Sen tences and Thei r Pars e Times 53

SENTLNCES TIME (ms .)

Draw a straig h t l ime f r o m here ~ T> to there <T> 283

Please make f rom here ~ T> a l ine to there -zT> 366

Please  make me a l ine f r om (234 , 412) to here <T> 366

Please  erase the l ine here <T> 150

Draw a l i n e  between here < T -  and here <T> 300

Put  a p o i n t  here <T> 116

Draw a point named FRED at <T> 217

Draw the point ETHEL here <T> 200

Now connec t FRED and ETHEL 167

Draw a s t r a i g ht line from - -T - thro ugh ~T- - 317

Join the point FRED with this point - T . - 266

Stop 17
Please connect this <T> with this <T> 266

From here <T> draw a line to there <T> 333

From this point <T> draw a line to FRED 433

- T-- - T~ Draw a s t ra ight  l ine f rom here to here 917

With this - T - - connec t t h i s  <T> 333

Draw a three  inch l ine named L3 here <T> 2 17

Draw a hor izon tal l ine w i t h  a 3 inch  l e n g t h  here <Tm. 350

Draw a vertical line 5 inches long called L5 to here -CT--- 317

Draw a circ le with a 2 inch radius here - T  — 300

Please  draw a hundred mm l i ne  named DAVE at an ang le of
fifty degrees here -T m.

Make me a circle called HEAD with a 2 inc h diameter there ~T - - 266

Erase the  l i n e  named ARM 167

Erase the line from here -T- - to here < Tm. 316

Draw a circle of rad ius four  u n i t s  named EYE here -~ T - - 250

Erase t h i s  c i r c l e  - -1 - 133

Call  th is  - T o  X43 150

Name the three inch line L3 216

What can you draw? 67
(an von draw circles? 100

Can you draw a c i r c l e  w i t h  a 3 inch  c i r c u m f e - r e n c e ?  31 7

How many screen units is an inch? 2~
()

Is the re -  a p o i n t  named P 7 133

Wha t did you draw at 1’? 183

L iii von dr a w ?  100 C

_ _ _  - - - - -~~~~~ --~~~~~ - ---- --- --- - --—--



r , .  e -w~-,r,s rr . rif l r - -- ~~ - - j- —~.~~.aene. -

54

<message - : :=  (KB LA #Q (MG <p r o t o t y p e - ) )
<pro totype~- ::= ( (%TYPE . <type>

(ZACTION . < a c t >  )
(%OBJECT . < o b j >  )
(%NANE . <name> )
(%0RIEN T . <ornt> )
(%POSIT . <posit>)
(%SIZE . <size> ) )

<type - ::= IMP or Q

<act> : := DRAW or ERASE or NAME

-zobj > : :=  ST--LINE or CIRCLE or POINT

~name - : := a LISP atom

<ornt> ::= a number in degrees

<posit~ ::= (<p t> 1)

- p t >  : :=  (ENDPOINT < coo rds > )  or
(LOCATOR - coords>)  or
(TOUCH < c o o r d s > )

—coords -- ::= (<x—val-’ . <y—val> ) or
(NODE . <node i d e n t i f i e r> )

<x—va l - : : x—coordinate in screen units

<y—val> ::= y— coordiante in screen units

<node identifier — : : the identifier of a node in the semantic network

~size - : :=  (RADIUS . <num’) or
(DIAMETER . - n u m - )  or
(CIRCUMFERENCE . -~num--) or
<num;-

<num -~ : := a length in s m e n  u n i t s

A p p e n d ix  K. : [)escrjj~flon of t lie Prototype



~
‘tfl

~
rr, - V r ~~~~~~~~~~~~t r  - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- ~r~~~ --—---.~~~~~w~~~ -— ~~~~~~~
- -

55

TEMPLATE
NUMBER TEMPLATE

TO 0
Tl (OK)
T2 (Thanks * for the session)
T3 ( N a t u r a l  Language Graphics  system)
T4 (NLG — Pilot Sys tem — summer , 1976)
T5 (Please rephrase the sentenc I

T6 (Object as spec i f i ed  cannot  be t~~und )
T7 (*)
T8 (yes)
T9 (no)
Tl0 (I don ’t know)
Tll (*)
Tl2 (* and *)
Tl3 (* * , F n d *)
T20 (at *)
T21 (* has no name)
T22 (a * named *)
T23 (a *)

Appendix L: Language Generation Temp lates 

- - --~~~~~~~~ --



—— - 
~~~~~~~~~~~~~~~~~~~~~ — 

— -- - - - - - - - - -—---
~--— - ~~

56

~~~~~~~~~~~~~
S

~~~~~~~

M

~~~~~~~~~~~~~
€MBIG ESH

F 0 P M S

~~ENA~~~~
C-

C

U

TEMPLATE SUBS

A pp end ix M: Generative ATN Gramm ar

-- - - - -----~~ - - - -~~—~~~~~~~-----~~~~~~~- -_—-- - - - - --- “_ _-- - - - - -



.— --~~~c-,-- -r-nr ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ !~~~~?~~~~~~~ tr ~-�- -‘~~~~~~~~~~r - — - - - ~~~~~~~~~~~~~~ ~~~~~~~ rar - - — ~- - - - - -

57

NAME PART OF FUNCTION

ACT— l POINT How to draw a POINT
ACT—2 ST—LINE Structural check
ACT—3 --
ACT—4 ——
ACT—5 ST—LINE How to find midpoint
ACT—6 ——
ACT-7 -—
ACT—8 ST—LINE How to draw a ST—LINE
ACT-9 -—
ACT— b ——
ACT— il --
ACT- 12 ——
ACT—l3 POINT Structural check
ACT— 14 DEFPOINT S t r u c t u r a l  check
ACT— l5 —— - - —

ACT—16 DISTANCE Structural check
ACT—17 ANGLE Structural check
ACT-l8 -- ---

ACT—l9 CIRCLE S t ruc tu r a l  check
ACT—20 CIRCLE How to draw a CIRCLE
ACT—21 CIRCLE How to find a locator
ACT—22 CIRCLE How to f ind a radius

Appendix N: Lis t  of Act ions  Used in Semant ic  Network

- — ~~~~~~~~---~~~~~~~~ --— - - — 

~~~

---- -—--

— t~~~~~~~~~~~ ~- -~r~
-‘- - r - - ~~~~~

—
~~~~~~~~~ _ _ _ _ _ _ _ _ _ _  ________________________________________________________

58

Appendix 0: KBNET — Initial S t a t e  of KB Network

( ( D E F IN E
SUBSETOF SUBSETOF—
ELMNTOF ELMNTOF-
NAME NAME-
TYPE TYPE—
ELMNTDESCR ELMNTDESCR—
DATTR DATTR-
ROLE ROLE—
RESTR RESTR —
ACTION ACTION-
ATTR ATTR-
INSTNCOF INSTNCOF—
VAL VAL—
CASE CASE—
NUMBER NUMBER—
OBJECT OBJECT—
ERASED ERASED—
STRUCTURAL STRUCTURAL-
1NSTANTI/eTES INSTANTIATES—

))
( ( B U I L D  TYPE SYSTEM NAM E SCREEN N ODEL))
( ( B u I L D  NAME OBJECTS TYPE SET)= XX)
( ( B U I L D  NAME LINES TYPE SET SUBSETO F *XX)= XY )
( (BU ILD NAME PRIMITIVES TYPE SET SUBSETOF *XX)= XZ )
( (BUILD NAME DEFPOINTS TYPE SET SUBSETOF *XX))
( ( B U I L D  NAME ANGLES TYPE SET SUBSET OF *Xx))
( ( B U I L D  NAM E DISTANCES TYPE SET SUBSETOF *xx))
( (BUILD NAME CURVES TYPE SET SUBSETOF *XY))
( ( B U I L D  NAME ST—LINES TYPE SET SUBSETOF *XY SUBSETOF *xz))
( (BUILD NAME POINTS TYPE SET SIJB SETOF *~~~~~ SUBSETOF (FIND NAME DEFPO INTS )

( (B UILD NAME UNIVERSE TYPE SET
SUBSETOF— ~~~~~~

SUBSETOF — (BU iLD NAME SITUATIONS
TYPE SET
SUBSETOF— (BUILD NAM E CONNECTIONS TYPE SET)

( ( B U I L D  NAME DEFP O INT
TYPE CONCEPT
ELMNTDESCR — (FIND NAME DEFPOINTS)
STRUCTURA L ACT-14
DATTR ( B U I L D  ROLE XVALUE

TYPE DESCRIPTION
RESTR ( F I N D  NAME DISTANCES)

DATTR (BUILD ROLE YVALUE
TYPE DESCR I PT I ON
RESTR (FIND NAME DISTANCES)

)
) )
( ( B U I L D  NAM E DISTANCE

TYPE CONCEPT -
;

EL MNTDESCR— ( F I N D  NAM E 1Jli ~IAN LI-S )
STRUCTURAL ACT- 16 —.

))

_ _ _ _  _ _



_________________ - -— —- — — -——-- — —- - --—.-~~~~~ — .- . — —-- — — - — - - —  
~~~~~~~~~ 

-
~

—
~

- .:~~
---------- — —: — — ---- - -

__

~
iuI!IIII

1

((BUILD NAME ANGLE
TYPE CONCEPT
ELMN TDESCR- (FIND NAME ANGLES)
STRUCTURAL ACT—17

))
((BUILD NAME POINT

TYPE CONCEPT
ELMN TDESCR — (F IND NAME POINTS)
aIRUCTURAL ACT— l 3
DATTR (BUILD ROLE LOCATOR

TYPE DESCRIPTION
CASE %POSIT
RESTR (FIND NAME DEFPOINTS)

DATTR (BUILD ROLE TODRAW
TYPE DESCRIPTION
ACTION ACT—l
CASE %HOW

))
((BUILD NAME ST—LINE

TYPE CONCEPT
ELMNTDESCR- (FIND NAME ST-LINES)
STRUCTURAL ACT—2
DATTR (BUILD ROLE ENDPOINT

TYPE DESCRIPTION
RESTR (FIND NAME DEFPOINTS)

DATTR (BUILD ROLE ENDPOINT
TYPE DESCRIPTION
RESTR (FIND NAME DEFPOINTS)

DATTR (Bu iLD ROLE LOCATOR
TYPE DESCRIPTION
CASE ~P~i i~IT
RESTR (FIND NAME DEFPOINTS)

DATTR (BUILD ROLE MIDPOINT
TYPE DESCRIPTION
RESTR (FIND NAME DEFPO INTS)
ACTION ACT-S

DATTR (BUILD ROLE ORIENTATION
TYPE DESCRIPTION
CASE Z O R T E N T
RESTR (F IND NAM E ANGLES)

DATTR (BUILD ROLE LENGTH
TYPE DESCRIPTION
CASE % S I Z E
RESTR (F I N D NAM E DISTANCES)

DATTR (BUILD ROLE TODRAW
TYPE DESCRIPT I ON
CASE ~FIO W
ACTION ACT- S

))

—U-
~~~~ 

- 
~~~~~~~~~~~~~~~~~~~~~~~~~~ ~

—
~~~~~~~~~~~~~

---- ~~~~~~ ‘~~~~
-
~~~ -~~~~~~~~ -- —-  — ----—--- —-- -,----

~~
---- —

-
- -- - ------- -- -

60

((BLILD NAME CIRCLES
TYPE SET
SUBSETOF (FIND NAME CURVES)
E LMNTDESCR (BUILD NAME CIRCLE

TYPE CONCEPT
STRUCTURAL ACT— 19
DATTR (BUILD ROLE LOCATOR

TYPE DESCRIPTION
ACTION ACT—21
CASE %POS I T
RESTR (FIND NAME DEFPO INTS)

DATTR (BUILD ROLE RADIUS
TYPE DESCRIPTION
ACTION ACT-22
CASE %SIZE
RESTR (FIND NAM E DISTANCES)

DATTR (BUILD ROLE CIRCUMFERENCE
TYPE DESCRIPTION
RESTR (FIND NAME DISTANCES)

DATTR (BUILD ROLE DIAMETER
TYPE DESCRIPTION
RESTR (FIND NAME DISTANCES)

DATTR (BUILD ROLE TODRAW
TYPE DESCRIPTION
CASE %HOW
ACTION ACT—2O

))

STOP (*** TO FORCE WAY OUT OF MENTAL READ LOOP ***)

Note: The inverses of the links are indicated by the addition o~ a dash.
Note: The above descri ption is in t h e f o r m read by the MENTAL i n t e r p r e t e r .

S

- - -------

-
~~~~~~ 

-- -- 
~~~~~~~~~~~~~~~~~~~~~~~ ~~~-= ----~~~~ —~~~ ~~~~~~~~ - -

6 1

A p p e n d i x F : The CR Mod u le In ter face

The interface at GR is de f ined as follows:

< message> : : = (CR KB i~Q (<pro to type>))

<p r o t o t y p e> : : = ((%TYPE . some typ e)
(%ACTION . some action)
(%OBJECT . some object)
(ZNAME . some name)
(%HOW . <program>)

-~program> ::= (<step>
1)

< s t e p > : := (F4PNT x l Ll)
or

(F4L INE 1 xl vi x2 ~~)or
(F4L INE2 xl ~~ ang le len~~ j)~

or
(F4L IN E3 midx ~~~ x2 ~~)or
(F4LINE4 midx ~~~~ ~~~~~ l eng th)

or
(F4CRCL cx cv radius)

or
(F4ERSE)

----- - - - ---
~~~

62

A ppe n d ix Q
The Syn tax  of Calls to the  QA S e c t i o n  of the  KB Module

<message> ::=  (KB LA #Q ( QA < f u n c t i o n>  ))

<function> : : =  (INFO <keywords> < p r o t o t y p e  form> )
or

(FINDOBJ <name> < type>)
or

(CONVERT a number <units>)
or

(FINDD RAW < o b j e c t>

<keywords> ::= (<keys>
1

< k e y s >  : : %OBJECT or %NANE or %POSIT or NODE

- prototype form> ::= ~~~~ valid c omp~~~te or p a r t i a l  p r o t o t y p e

<name> ::= an obj ect name e x t ra c t e d  f r o m  in input  sen tence

-~type.> ::= ST—LINE or POINT or CIRCLE or NIL

<units - - : := UNIT or INCH or CM or ~1~1 or DEGRE E or RADIAN

<object- - : := a primiti<e or sus~~-cted object 

----~~-- --~~~~ --- —~~~~ 



___________ - — 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

—- —
~

——- - —------ -- -—
~~~~~~

- — - -- - ----——‘-—-—----- ---------—------ - —-----— --- --------. ~ — =-- >~=‘--~- - :~ ----O-=~ 
-- —----- - —- —-

~~~

--.

SECU RI 1, CL AS~~I SC A f l -) N OF T~ - t P A - - 1 t A t Thts
, I

- _

RE C~
T DOCUMENTA TION PAGE

—

[
fl~~~~~()}>~~ (0 1 1 \ N

I. ~~~~~~~~~~ ~~~N ,<i~ //
$ —

~
-..

~~~ . - N i VT  ACL~~~~~~ *~~~~ ~5’ —JI~~~E £,~~~ ‘ ~~L111~ 
-

~~~~ 2\T~~~1~~~
’
~-7 7--~ii~~~ ~~~~~~~~~~~~~~~~~~~~~~~

-
~~~~

4. T iT L E  - ,ot I S u h t , t i ~~) - — —— - 
~~~~~~ r C O F  Ct E t>~O~R~T S C R 1 3 0  C C ,

\ \ ~~ l~~ R \ l ’ l l I L ~~ < I [l r t c r i i
(‘ -

‘

-
C -

~
I-

~~~~. 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

— 

_ _ _ _ _  _ _ _ _ _ _ _  ~~~~~~~~~~~ C H - ;  - T ~~~~~~~~~~~~~~~~~~ /
1- AU C — o -~

f~~~ -i dC /~~~ n~ , 
;~~ 

- \/.\ - 7 ~~ 23~~
~~ 

~~~~~~~~~~ I ~ 
‘s j -~~ ‘

I -

s . p~ -H~~~ tT~T;T~H.~~H~~~~- - su NA M E AND A D D R E S S ¶ 0 . P R O G R A M ~~L E N . P5~~~~E I ~~ TA > (

~- ‘t at e L n i v e r s i t v A R E A A nos ,c L O I T N . 0 5BE N ~
Compute r & I n f o r m a t i o n Sc ience R e > c a r c h C e n t e r 6 11C2F - -

-

Columbus , ~~l 1 L32 10 ~~~~~~~~
- - .

- -
~~~~~~ / 1/ ~ 

-

- 

~~ 23 OLJA 2 ~~~~~
I C-N ’S’O LLING O F F I C E  N° M E  AND A D D R E S S  ~~!~~~~~~~~D AT E

Air  F or c c  ~~fN c e  of Scientific Research/Nm 1/’ un~ ~~
- - - ¶ - ~~~~~~~~~~~~~~~~~~~~ 

- - 
- 

-

[3~~i i i n i ~ tt e ii i)i ~ - — -- 
~~~~

•-\ ,
__‘ —

-

4 M O N I T O r I NG A 3~~ \ Cy C~~ ME & A C I I U If o r 1 o I It ~ Oi l)

UNCL\ SSIF 1 LI

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- -

SCHEDULE

5 U I C C u I  R I IT I O N  S T A T E M E N T  ‘of  th is Report )

A p p r o v e d  for  p u b l i c  r c lc ) 1se ;  I l i s t r i b u t i o n  u n l i n .j t e d  .

17.  D ISTR I  B UT IO N  ST A T EM A N T  ‘of the ~ h s t r oc t ~nr, r-- I in ill , A ~u. ‘I IS! I I~ - - - - -  !~ 

iS. SUPPI S - C ’ A P Y  N O T E  S

1 )  X C  I W O R D S  ( O t t . on p - - . — out, i f ess - n r  II I t 0-I - number)

2) -~~- - ~~~4 T  ~~~ - - 0- - -

I S r i -p o r t  dt- ~;c r i h - s  in o ; - .~”- I I - : - - tit - ii svi-i t en I or dr aw l si op Ic

l et ti r e-s 011 ,i i i  l i l t  I - - r cr ;l  p h i c ;  m u  us I n i~ n i  tin II I - iui ~ . t t i  I C  I ~~f l h I

SVS Ciii I s ,i .ihle Of ‘ h i  I ;c iii I 0~~~C po i n t ~ • 0:1 I c I ( i i  Ofl I - ‘0110.1 id r cii h i -

i- ; ,-r , i -s  w i  I i~i On- ;w inc quest b u s  i h - ’ o 1 t  -, .Ite:-1 & . h I I i % I i t  t i N  . 1 0 1  ob~~ -e -
~

1 he scr- -- n. Er .i.str --s are’ ii SO pe - I C i t t I I  — l . i f l l I i I Y C  i u l 3 C I i t  c iii  1- - em—

Ire - h I i ; H - b  w i t h  t ouc h- s t , I o ; 1 V t - V  p os it i -’ n a l i n l i n - i t  b - u i . 
- - -~~~~~~~

DD 
~~~~~~~~~~~~~ 

1473 r i i , IN O~ ¶ ~~~~~~~~~ - O ’ S O L E T F
I • —

~~~~~~~ ~I~~1) “ ~
— - -

~~~~~ ~~~~~~~~~~~~~~~~~~~ I

_

7:-

i11
~~~~~~~~~~~~ 

j



—I- - ~~~~~~~~~~~~~~~~~~ .3 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —

i .

S E C U R I T Y C L A S S I F I C A T I O N OF THIS P A O E . Cf7 eo f~ . ’ . di

2~~. ,- \ B S T L A C I —

The - i v - t c m w;os desi gned and i r - :p l eme nN .-d h’~- t he a u t h o r s I - t r i n i ~ Summer 1 9 7~
was w r i ttA-fl in LISt1 1.6 , runs in ih~~’ I1 t -~!IK ~-c rds on t DECSvstem— 1 I)

-OCl t ’u i or , and disp l ay s p i c t u r e s on an :i c’s~ P1 i.si~.i Paree 1

The sys to: - : was im i - l . L-m e u t c - d to t e st C O t i d~- ; I s on -y st v-rn o r g a n ioo t ion ,

to e st a b l i s h the v i a b i l i t y of c o m b i n i n g l . u I I c u : S C C - m d ~r ap b i cs , and to

e x p e r i m e n t w i t h a p p r o p r i a t e A. I - techniques.

I :~~ E .-‘,S~— I I- I l- i)

- - _______SCCURITY CLA$$IFICATIO

~~

Or

~~~

.C P A c ~E ’When Data EnI.r.dO


